D.E is
(2tsin(y)+ety3)dt+(t2cos(y)+3y2et)dy=0Now .divide both side of the above equation by dt ,thus we get
(2tsin(y)+ety3)+(t2cos(y)+3y2et)dtdy=0⟹2tsin(y)+t2cos(y)dtdy+ety3+3y2etdtdy=0Note that
2tsin(y)+t2cos(y)dtdy=dtd(t2sin(y))ety3+3y2etdtdy=dtd(y3et)Thus,
2tsin(y)+t2cos(y)dtdy+ety3+3y2etdtdy=0⟹dtd(t2sin(y)+y3et)=0⟹∫d(t2sin(y)+y3et)=∫0dt⟹t2sin(y)+y3et=c
Comments