Question #127090
(2t×siny+e to the power t×y to the power 3)dt+(t to the power 2×cosy+3×y to the power 2×e to the power t)dy=0
1
Expert's answer
2020-07-22T18:57:19-0400

D.E is

(2tsin(y)+ety3)dt+(t2cos(y)+3y2et)dy=0(2t\sin(y)+e^ty^3)dt+(t^2\cos(y)+3y^2e^t)dy=0

Now .divide both side of the above equation by dtdt ,thus we get

(2tsin(y)+ety3)+(t2cos(y)+3y2et)dydt=0    2tsin(y)+t2cos(y)dydt+ety3+3y2etdydt=0(2t\sin(y)+e^ty^3)+(t^2\cos(y)+3y^2e^t)\frac{dy}{dt}=0\\ \implies 2t\sin(y)+t^2\cos(y)\frac{dy}{dt}+e^ty^3+3y^2e^t\frac{dy}{dt}=0\\

Note that

2tsin(y)+t2cos(y)dydt=ddt(t2sin(y))ety3+3y2etdydt=ddt(y3et)2t\sin(y)+t^2\cos(y)\frac{dy}{dt}=\frac{d}{dt}(t^2\sin(y))\\ e^ty^3+3y^2e^t\frac{dy}{dt}=\frac{d}{dt}(y^3e^t)

Thus,

2tsin(y)+t2cos(y)dydt+ety3+3y2etdydt=0    ddt(t2sin(y)+y3et)=0    d(t2sin(y)+y3et)=0dt    t2sin(y)+y3et=c2t\sin(y)+t^2\cos(y)\frac{dy}{dt}+e^ty^3+3y^2e^t\frac{dy}{dt}=0\\\implies \frac{d}{dt}(t^2\sin(y)+y^3e^t)=0\\ \implies \int d(t^2\sin(y)+y^3e^t)=\int0dt\\ \implies t^2\sin(y)+y^3e^t=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS