Question #127084
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem.

y′′ + 4y = { t, 0 ≤ t < 1
{ 1, 1 ≤ t < ∞, y(0) = 3, y′(0) = 3


Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n).

Y(s)= _______________
1
Expert's answer
2020-07-27T19:05:01-0400

Y(s)=L(y)=0esty(t)dt.L(y)=33s+s20esty(t)dt==33s+s2Y(s).L(f(t))=0estf(t)dt=01estf(t)dt+1estf(t)dt==01esttdt+1estdt=1essess2+ess.33s+s2Y(s)+4Y(s)=1essess2+ess(s2+4)Y(s)=3+3s+1essess2+essY(s)=3+3s+1essess2+esss2+4;Y(s)=L(y)=\int\limits_0^\infty e^{-st}y(t)\,dt.\\ L(y'')=-3-3\cdot s + s^2\cdot \int\limits_0^\infty e^{-st}y(t)\,dt=\\ =-3-3\cdot s + s^2\cdot Y(s).\\ L(f(t))=\int\limits_0^\infty e^{-st}f(t)\,dt=\int\limits_0^1 e^{-st}f(t)\,dt+\int\limits_1^\infty e^{-st}f(t)\,dt=\\ =\int\limits_0^1 e^{-st}t\,dt+\int\limits_1^\infty e^{-st}\,dt=\frac{1-e^{-s}-se^{-s}}{s^2}+ \frac{e^{-s}}{s}.\\\\ -3-3\cdot s + s^2\cdot Y(s)+4\cdot Y(s)=\frac{1-e^{-s}-se^{-s}}{s^2}+ \frac{e^{-s}}{s}\\ (s^2+4)\cdot Y(s)=3+3\cdot s+\frac{1-e^{-s}-se^{-s}}{s^2}+ \frac{e^{-s}}{s}\\ Y(s)=\frac{3+3\cdot s+\frac{1-e^{-s}-se^{-s}}{s^2}+ \frac{e^{-s}}{s}}{s^2+4};


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS