Question #127081
Use the Laplace transform to solve the given initial value problem.

y′′−4y′−96y=0; y(0)=14, y′(0)= 28


Enclose arguments of functions in parentheses. For example, sin(2x).

y =___________
1
Expert's answer
2020-08-03T18:21:52-0400

Solution:

y(x)Y(p)y(x)\leftrightarrow Y(p)

y(x)pY(p)y(0)=pY(p)14y'(x)\leftrightarrow pY(p)-y(0)=pY(p)-14

y(x)p2Y(p)py(0)y(0)=p2Y(p)14p28y''(x)\leftrightarrow p^2Y(p)-py(0)-y'(0)=p^2Y(p)-14p-28

We compose an operator equation that corresponds to the given differential equation:

p2Y(p)14p284(pY(p)14)96Y(p)=0p^2Y(p)-14p-28-4(pY(p)-14)-96Y(p)=0

(p24p96)Y(p)=14p28(p^2-4p-96)Y(p)=14p-28

Y(p)=(14p28)/(p24p96)Y(p)=(14p-28)/(p^2-4p-96)

Y(p)=(14p28)/((p+8)(p12))Y(p)=(14p-28)/((p+8)(p-12))


y(x)=Resp=8(Y(p)epx)+Resp=12(Y(p)epx)=y(x)=Res_{p=-8}(Y(p)e^{px})+Res_{p=12}(Y(p)e^{px})=


=limp814p28p12epx+limp1214p28p+8epx==\lim\limits_{p\rarr-8}\frac{14p-28}{p-12}e^{px}+\lim\limits_{p\rarr12}\frac{14p-28}{p+8}e^{px}=


=14020e8x+14020e12x=7e8x+7e12x=\frac{-140}{-20}e^{-8x}+\frac{140}{20}e^{12x}=7e^{-8x}+7e^{12x}


Answer: y(x)=7e(8x)+7e(12x)y(x)=7e^{(-8x)}+7e^{(12x)}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS