Solution:
y(x)↔Y(p)
y′(x)↔pY(p)−y(0)=pY(p)−14
y′′(x)↔p2Y(p)−py(0)−y′(0)=p2Y(p)−14p−28
We compose an operator equation that corresponds to the given differential equation:
p2Y(p)−14p−28−4(pY(p)−14)−96Y(p)=0
(p2−4p−96)Y(p)=14p−28
Y(p)=(14p−28)/(p2−4p−96)
Y(p)=(14p−28)/((p+8)(p−12))
y(x)=Resp=−8(Y(p)epx)+Resp=12(Y(p)epx)=
=p→−8limp−1214p−28epx+p→12limp+814p−28epx=
=−20−140e−8x+20140e12x=7e−8x+7e12x
Answer: y(x)=7e(−8x)+7e(12x)
Comments