Question #127085
1. Use the Laplace transform to solve the given initial value problem.

y^4) − 81y = 0; y(0) = 20, y′(0) = 39, y′′(0) = 108, y′′′ (0) =1 89


Enclose arguments of functions in parentheses. For example, sin(2x).

y(t) = ___________


2. Find the Laplace transform of the function:

f(t) = { 0, t < 4
{ t^2 - 8t + 9, t is greater than or equal 4
1
Expert's answer
2020-07-29T13:42:08-0400

1) Given differential equation is y481y=0:y(0)=20,y(0)=39,y(0)=108,y(0)=189y^4 − 81y = 0 : y(0) = 20, y'(0) = 39, y''(0) = 108, y'''(0) =1 89 .

Taking Laplace Transform, we get

L(y481y)=0L(y^4-81y ) = 0

Now using Linear property of Laplace, we get

L(y4)81L(y)=0L(y^4) - 81 L(y) = 0 .

    (s4Ys3y(0)s2y(0)sy(0)y(0))81Y=0\implies (s^4 Y-s^3y(0)-s^2y'(0)-sy''(0)-y'''(0)) - 81 Y = 0 where L(y(t))=Y(s)L(y(t)) = Y(s) .

    (s4Y20s339s2108s189)81Y=0\implies (s^4 Y-20s^3-39s^2-108s-189) - 81 Y = 0

    (s481)Y=20s3+39s2+108s+189\implies (s^4-81)Y = 20s^3+39s^2+108s+189

    Y=20s3+39s2+108s+189s481\implies Y = \frac{20s^3+39s^2+108s+189}{s^4-81} .

Now, taking Laplace Inverse transformation on both sides, we get

y=L1(20s3+39s2+108s+189s481)y = L^{-1} (\frac{20s^3+39s^2+108s+189}{s^4-81})

=L1{4s+9s2+9+3s+3+13s3}=L1{4ss2+9+9s2+9+3s+3+13s3}=4L1{ss2+9}+9L1{1s2+9}+3L1{1s+3}+13L1{1s3}=4cos(3t)+913sin(3t)+3e3t+13e3t=L^{-1}\left\{\frac{4s+9}{s^2+9}+\frac{3}{s+3}+\frac{13}{s-3}\right\} \\ =L^{-1}\left\{\frac{4s}{s^2+9}+\frac{9}{s^2+9}+\frac{3}{s+3}+\frac{13}{s-3}\right\} \\ =4L^{-1}\left\{\frac{s}{s^2+9}\right\}+9L^{-1}\left\{\frac{1}{s^2+9}\right\}+3L^{-1}\left\{\frac{1}{s+3}\right\}+13L^{-1}\left\{\frac{1}{s-3}\right\} \\ =4\cos \left(3t\right)+9\cdot \frac{1}{3}\sin \left(3t\right)+3e^{-3t}+13e^{3t}

So, y=4cos(3t)+3sin(3t)+3e3t+13e3ty =4\cos \left(3t\right)+3\sin \left(3t\right)+3e^{-3t}+13e^{3t} .


2) L{f(t)H(ta)}=easL{f(t+a)}L \{f(t)H(t− a)\}=e^{−as}L \{f(t+ a)\}

Hence, L{(t28t+9)H(t4)}=e4sL{(t+4)28(t+2)+9}L\{ (t^2-8t+9 ) H(t-4) \} = e^{-4s} L\{ (t+4)^2-8(t+2)+9 \}

=e4sL{t2+9}=e4s(2s3+9s)= e^{-4s} L\{ t^2 +9 \} = e^{-4s} (\frac{2}{s^3}+\frac{9}{s}) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS