1) Given differential equation is y4−81y=0:y(0)=20,y′(0)=39,y′′(0)=108,y′′′(0)=189 .
Taking Laplace Transform, we get
L(y4−81y)=0
Now using Linear property of Laplace, we get
L(y4)−81L(y)=0 .
⟹(s4Y−s3y(0)−s2y′(0)−sy′′(0)−y′′′(0))−81Y=0 where L(y(t))=Y(s) .
⟹(s4Y−20s3−39s2−108s−189)−81Y=0
⟹(s4−81)Y=20s3+39s2+108s+189
⟹Y=s4−8120s3+39s2+108s+189 .
Now, taking Laplace Inverse transformation on both sides, we get
y=L−1(s4−8120s3+39s2+108s+189)
=L−1{s2+94s+9+s+33+s−313}=L−1{s2+94s+s2+99+s+33+s−313}=4L−1{s2+9s}+9L−1{s2+91}+3L−1{s+31}+13L−1{s−31}=4cos(3t)+9⋅31sin(3t)+3e−3t+13e3t
So, y=4cos(3t)+3sin(3t)+3e−3t+13e3t .
2) L{f(t)H(t−a)}=e−asL{f(t+a)}
Hence, L{(t2−8t+9)H(t−4)}=e−4sL{(t+4)2−8(t+2)+9}
=e−4sL{t2+9}=e−4s(s32+s9) .
Comments