Question #127129
Find the general solution of
y" + 3y' + 2y = 1/(1+e^x)
1
Expert's answer
2020-07-23T18:13:14-0400

We solve a second order differential equation of the type:

ay''+by'+cy=f(x)

where a=1

b=3

c=2

f(x)=1/(1+e^x)

The solution will consist of common and particular solutions and have a type:

ygen=ycom+ypart

To find a common solution we solve second order differential equation y''+3y'+2y=0 and find roots of polynomial r2+3r+2=0

Its roots  

r1=3+3241221=3+12=3+12=1r_1={{-3+\sqrt{3^2-4\sdot1\sdot2}}\over{2\sdot1}}={{{-3+\sqrt{1}}\over{2}}={{-3+1}\over{2}}}={-1}

r2=33241221=312=312=2r_2={{-3-\sqrt{3^2-4\sdot1\sdot2}}\over{2\sdot1}}={{{-3-\sqrt{1}}\over{2}}={{-3-1}\over{2}}}={-2}

​Roots are complex therefore the common solution will be ycom=C1ex+C2e2xy_{com}=C_1e^{-{x}}+C_2e^{-2{x}}

We will use the method of variation of parameters to find a particular solution

{C1(x)y1+C2(x)y2=0C1(x)y1+C2(x)y2=f(x)a0\begin{cases} C'_1(x)y_1+C'_2(x)y_2=0 \\ C'_1(x)y'_1+C'_2(x)y'_2={f(x)\over {a_0}} \end{cases}

y1=exy2=e2xa0=1y_1=e^{-{x}}\\ y_2=e^{-{2x}}\\ a_0=1

finally we get

{C1(x)ex+C2(x)e2x=0(1)C1(x)ex2C2(x)e2x=11+ex(2)\begin{cases} C'_1(x)e^{-{x}}+C'_2(x)e^{-{2x}}=0 (1)\\ -C'_1(x)e^{-{x}}-2C'_2(x)e^{-{2x}}={1\over {1+e^{{x}}}} (2) \end{cases}

add (2) to (1) and we get

2C2(x)e2x=11+exC2(x)=e2x1+ex-2C'_2(x)e^{-{2x}}={1\over {1+e^{x}}}\\ C'_2(x)=-{e^{2x}\over {1+e^{x}}}

We will make some changes and simplifications

C2(x)=e2x+exex1+ex=ex(ex+1)ex+1+exex+1=ex+exex+1C'_2(x)=-{e^{2x}+e^{x}-e^{x}\over {1+e^{x}}}=-{e^{x}(e^{x}+1)\over {e^{x}+1}}+{e^{x}\over {e^{x}+1}}=-e^{x}+{e^{x}\over {e^{x}+1}}

Let us integrate C'2

C2(x)=(ex+exex+1)dx=ex+lnex+1+C2C_2(x)=\lmoustache{(-e^{x}+{e^{x}\over {e^{x}+1}})dx}=-e^{x}+ln\vert{{e^{x}+1}}\vert+C_2

we multiply (1) by 2, add to (2) and get

C1(x)ex=11+exC1(x)=ex1+exC'_1(x)e^{-{x}}={1\over {1+e^{x}}}\\ C'_1(x)={e^{x}\over {1+e^{x}}}

Let us integrate C'1

C1(x)=(exex+1)dx=lnex+1+C1C_1(x)=\lmoustache{({e^{x}\over {e^{x}+1}})dx}=ln\vert{{e^{x}+1}}\vert+C_1

Now we add these values in our general solution for y and will get

ygen=(ex+lnex+1+C1)ex+e2x(lnex+1+C2)y_{gen}=(-e^{x}+ln\vert{{e^{x}+1}}\vert+C_1)e^{-{x}}+e^{-{2x}}(ln\vert{{e^{x}+1}}\vert+C_2)

Finally we get

ygen=1+exlnex+1+C1ex+e2xlnex+1+C2e2xy_{gen}=1+e^{-{x}}ln\vert{{e^{x}+1}}\vert+C_1e^{-{x}}+e^{-{2x}}ln\vert{{e^{x}+1}}\vert+C_2e^{-{2x}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS