first-order nonlinear ordinary differential equation.
1-step:
Solve x+2y(x)−1=(x+2y(x)+1)dxdy(x)
2-step:
Let v(x)=x+2y(x), which gives dxdv(x)=2dxdy(x)+1:
v(x)−1=21(dxdv(x)−1)(v(x)+1)
3-step:
Solve for dxdv(x):
dxdv(x)=v(x)+13v(x)−1
4-step:
Divide both sides by v(x)+13v(x)−1 :
3v(x)−1dxdv(x)(v(x)+1)=1
5-step:
Integrate both sides with respect to x:
∫ 3v(x)−1dxdv(x)(v(x)+1)dx=∫1dx
6-step:
Evaluate the integrals:
91(4log(3v(x)−1)+3v(x)−1)=x+C1
where C1 is an arbitrary constant.
7-step:
Solve for v(x):
v(x)=31(4W(−414e9(x+C1))+1 )
or
v(x)=31(4W(−41i4e9(x+C1))+1)
or
v(x)=31(4W(41i4e9(x+C1))+1)
or
v(x)=31(4W(414e9(x+C1))+1)
8-step:
Substitute back for y(x)= 21(−x+v(x)):
Answer:
y(x)=61(−3x+4W(−414e9(x+C1))+1)
or
y(x)=61(−3x+4W(−41i4e9(x+C1))+1)
or
y(x)=61(−3x+4W(41i4e9(x+C1))+1)
or
y(x)=61(−3x+4W(414e9(x+C1))+1)
y(x)=32(W(−e4+C1−19x)+1)+21(−x−1).
Comments