first-order nonlinear ordinary differential equation.
1-step:
Solve x + 2 y ( x ) − 1 = ( x + 2 y ( x ) + 1 ) d y ( x ) d x x+2y(x)-1=(x+2y(x)+1)\tfrac{dy(x)}{dx} x + 2 y ( x ) − 1 = ( x + 2 y ( x ) + 1 ) d x d y ( x )
2-step:
Let v ( x ) = x + 2 y ( x ) , v(x)=x+2y(x), v ( x ) = x + 2 y ( x ) , which gives d v ( x ) d x = 2 d y ( x ) d x + 1 : \tfrac{dv(x)}{dx}=2\tfrac{dy(x)}{dx}+1: d x d v ( x ) = 2 d x d y ( x ) + 1 :
v ( x ) − 1 = 1 2 ( d v ( x ) d x − 1 ) ( v ( x ) + 1 ) v(x)-1=\tfrac{1}{2}(\tfrac{dv(x)}{dx}-1)(v(x)+1) v ( x ) − 1 = 2 1 ( d x d v ( x ) − 1 ) ( v ( x ) + 1 )
3-step:
Solve for d v ( x ) d x : \tfrac{dv(x)}{dx}: d x d v ( x ) :
d v ( x ) d x = 3 v ( x ) − 1 v ( x ) + 1 \tfrac{dv(x)}{dx}=\tfrac{3v(x)-1}{v(x)+1} d x d v ( x ) = v ( x ) + 1 3 v ( x ) − 1
4-step:
Divide both sides by 3 v ( x ) − 1 v ( x ) + 1 \tfrac{3v(x)-1}{v(x)+1} v ( x ) + 1 3 v ( x ) − 1 :
d v ( x ) d x ( v ( x ) + 1 ) 3 v ( x ) − 1 = 1 \tfrac{\tfrac{dv(x)}{dx}(v(x)+1)}{3v(x)-1}=1 3 v ( x ) − 1 d x d v ( x ) ( v ( x ) + 1 ) = 1
5-step:
Integrate both sides with respect to x:
∫ \int ∫ d v ( x ) d x ( v ( x ) + 1 ) 3 v ( x ) − 1 d x = ∫ 1 d x \tfrac{\tfrac{dv(x)}{dx}(v(x)+1)}{3v(x)-1}dx=\int1dx 3 v ( x ) − 1 d x d v ( x ) ( v ( x ) + 1 ) d x = ∫ 1 d x
6-step:
Evaluate the integrals:
1 9 ( 4 l o g ( 3 v ( x ) − 1 ) + 3 v ( x ) − 1 ) = x + C 1 \tfrac{1}{9}(4log(3v(x)-1)+3v(x)-1)=x+C_{1} 9 1 ( 4 l o g ( 3 v ( x ) − 1 ) + 3 v ( x ) − 1 ) = x + C 1
where C 1 C_{1} C 1 is an arbitrary constant.
7-step:
Solve for v ( x ) : v(x): v ( x ) :
v ( x ) = 1 3 ( 4 W ( − 1 4 e 9 ( x + C 1 ) 4 ) + 1 v(x) = \tfrac{1}{3}(4W(- \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1 v ( x ) = 3 1 ( 4 W ( − 4 1 4 e 9 ( x + C 1 ) ) + 1 )
or
v ( x ) = 1 3 ( 4 W ( − 1 4 i e 9 ( x + C 1 ) 4 ) + 1 ) v(x) = \tfrac{1}{3}(4W(- \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1) v ( x ) = 3 1 ( 4 W ( − 4 1 i 4 e 9 ( x + C 1 ) ) + 1 )
or
v ( x ) = 1 3 ( 4 W ( 1 4 i e 9 ( x + C 1 ) 4 ) + 1 ) v(x) = \tfrac{1}{3}(4W( \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1) v ( x ) = 3 1 ( 4 W ( 4 1 i 4 e 9 ( x + C 1 ) ) + 1 )
or
v ( x ) = 1 3 ( 4 W ( 1 4 e 9 ( x + C 1 ) 4 ) + 1 ) v(x) = \tfrac{1}{3}(4W( \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1) v ( x ) = 3 1 ( 4 W ( 4 1 4 e 9 ( x + C 1 ) ) + 1 )
8-step:
Substitute back for y ( x ) = y(x) = y ( x ) = 1 2 ( − x + v ( x ) ) : \tfrac{1}{2}(-x+v(x)): 2 1 ( − x + v ( x )) :
Answer:
y ( x ) = 1 6 ( − 3 x + 4 W ( − 1 4 e 9 ( x + C 1 ) 4 ) + 1 ) y(x) = \tfrac{1}{6}(-3x+4W(- \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1) y ( x ) = 6 1 ( − 3 x + 4 W ( − 4 1 4 e 9 ( x + C 1 ) ) + 1 )
or
y ( x ) = 1 6 ( − 3 x + 4 W ( − 1 4 i e 9 ( x + C 1 ) 4 ) + 1 ) y(x) = \tfrac{1}{6}(-3x+4W(- \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1) y ( x ) = 6 1 ( − 3 x + 4 W ( − 4 1 i 4 e 9 ( x + C 1 ) ) + 1 )
or
y ( x ) = 1 6 ( − 3 x + 4 W ( 1 4 i e 9 ( x + C 1 ) 4 ) + 1 ) y(x) = \tfrac{1}{6}(-3x+4W( \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1) y ( x ) = 6 1 ( − 3 x + 4 W ( 4 1 i 4 e 9 ( x + C 1 ) ) + 1 )
or
y ( x ) = 1 6 ( − 3 x + 4 W ( 1 4 e 9 ( x + C 1 ) 4 ) + 1 ) y(x) = \tfrac{1}{6}(-3x+4W(\tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1) y ( x ) = 6 1 ( − 3 x + 4 W ( 4 1 4 e 9 ( x + C 1 ) ) + 1 )
y ( x ) = 2 3 ( W ( − e 9 x 4 + C 1 − 1 ) + 1 ) + 1 2 ( − x − 1 ) . y(x)=\tfrac{2}{3}(W(-e^{\tfrac{9x}{4+C_{1}-1}})+1)+\tfrac{1}{2}(-x-1). y ( x ) = 3 2 ( W ( − e 4 + C 1 − 1 9 x ) + 1 ) + 2 1 ( − x − 1 ) .
Comments