Question #127110
(x+2y-1)dx - (x+2y+1) dy =0
1
Expert's answer
2020-07-23T17:56:10-0400

(x+2y1)dx=(x+2y+1)dy(x+2y-1)dx=(x+2y+1)dy

 


ODE classification:

first-order nonlinear ordinary differential equation.

Step-by-step solution:

1-step:

Solve x+2y(x)1=(x+2y(x)+1)dy(x)dxx+2y(x)-1=(x+2y(x)+1)\tfrac{dy(x)}{dx}

2-step:

Let v(x)=x+2y(x),v(x)=x+2y(x), which gives dv(x)dx=2dy(x)dx+1:\tfrac{dv(x)}{dx}=2\tfrac{dy(x)}{dx}+1:


v(x)1=12(dv(x)dx1)(v(x)+1)v(x)-1=\tfrac{1}{2}(\tfrac{dv(x)}{dx}-1)(v(x)+1)

3-step:

Solve for dv(x)dx:\tfrac{dv(x)}{dx}:


dv(x)dx=3v(x)1v(x)+1\tfrac{dv(x)}{dx}=\tfrac{3v(x)-1}{v(x)+1}

4-step:

Divide both sides by 3v(x)1v(x)+1\tfrac{3v(x)-1}{v(x)+1} :


dv(x)dx(v(x)+1)3v(x)1=1\tfrac{\tfrac{dv(x)}{dx}(v(x)+1)}{3v(x)-1}=1


5-step:

Integrate both sides with respect to x:


\int dv(x)dx(v(x)+1)3v(x)1dx=1dx\tfrac{\tfrac{dv(x)}{dx}(v(x)+1)}{3v(x)-1}dx=\int1dx


6-step:

Evaluate the integrals:


19(4log(3v(x)1)+3v(x)1)=x+C1\tfrac{1}{9}(4log(3v(x)-1)+3v(x)-1)=x+C_{1}


where C1C_{1} is an arbitrary constant.


Note:WW is the product log function.

7-step:

Solve for v(x):v(x):


v(x)=13(4W(14e9(x+C1)4)+1v(x) = \tfrac{1}{3}(4W(- \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1 )

or

v(x)=13(4W(14ie9(x+C1)4)+1)v(x) = \tfrac{1}{3}(4W(- \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1)

or

v(x)=13(4W(14ie9(x+C1)4)+1)v(x) = \tfrac{1}{3}(4W( \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1)

or

v(x)=13(4W(14e9(x+C1)4)+1)v(x) = \tfrac{1}{3}(4W( \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1)


8-step:

Substitute back for y(x)=y(x) = 12(x+v(x)):\tfrac{1}{2}(-x+v(x)):


Answer:

y(x)=16(3x+4W(14e9(x+C1)4)+1)y(x) = \tfrac{1}{6}(-3x+4W(- \tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1)

or

y(x)=16(3x+4W(14ie9(x+C1)4)+1)y(x) = \tfrac{1}{6}(-3x+4W(- \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1)

or

y(x)=16(3x+4W(14ie9(x+C1)4)+1)y(x) = \tfrac{1}{6}(-3x+4W( \tfrac{1}{4}i \sqrt[4]{e^{9(x+C_{1})}})+1)

or

y(x)=16(3x+4W(14e9(x+C1)4)+1)y(x) = \tfrac{1}{6}(-3x+4W(\tfrac{1}{4} \sqrt[4]{e^{9(x+C_{1})}})+1)



Differential equation solution:

y(x)=23(W(e9x4+C11)+1)+12(x1).y(x)=\tfrac{2}{3}(W(-e^{\tfrac{9x}{4+C_{1}-1}})+1)+\tfrac{1}{2}(-x-1).




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS