Here P=2x1;Q=2x(1−x)1
THus x=0 and x=1 are the regular points of the equation
Let's find the solution in form
y=n=0∑∞anxn+r
Hence
y′=n=1∑∞(n+r)anxn+r−1=n=0∑∞(n+r+1)an+1xn+r
y′′=n=1∑∞(n+r)(n+r+1)an+1xn+r−1=n=0∑∞(n+r+1)(n+r+2)an+2xn+r
Plugging it into the equation, we get
2x(1−x)n=0∑∞(n+r+1)(n+r+2)an+2xn+r+(1−x)n=0∑∞(n+r+1)an+1xn+r+3n=0∑∞anxn+r=0
n=0∑∞2(n+r+1)(n+r+2)an+2xn+r+1−n=0∑∞2(n+r+1)(n+r+2)an+2xn+r+2+
+n=0∑∞(n+r+1)an+1xn+r−n=0∑∞(n+r+1)an+1xn+r+1+3n=0∑∞anxn+r=0
n=1∑∞2(n+r+1)(n+r)an+1xn+r−n=2∑∞2(n+r−1)(n+r)anxn+r+
+n=0∑∞(n+r+1)an+1xn+r−n=1∑∞(n+r)anxn+r+3n=0∑∞anxn+r=0
For xr we get
(r+1)a1+3a0=0
For xr+1
2(r+2)(r+1)a2+(r+2)a1−(r+1)a1+3a1=0
Comments