Question #111465
2x(1-x)y"+(1-x)y'+3y=0 solve by forbeinus series.
1
Expert's answer
2020-04-23T18:21:36-0400

Here P=12x;Q=12x(1x)P=\frac{1}{2x}; Q=\frac{1}{2x(1-x)}

THus x=0 and x=1 are the regular points of the equation

Let's find the solution in form

y=n=0anxn+ry=\sum\limits_{n=0}^{\infty}a_nx^{n+r}

Hence

y=n=1(n+r)anxn+r1=n=0(n+r+1)an+1xn+ry'=\sum\limits_{n=1}^{\infty}(n+r)a_nx^{n+r-1}=\sum\limits_{n=0}^{\infty}(n+r+1)a_{n+1}x^{n+r}

y=n=1(n+r)(n+r+1)an+1xn+r1=n=0(n+r+1)(n+r+2)an+2xn+ry''=\sum\limits_{n=1}^{\infty}(n+r)(n+r+1)a_{n+1}x^{n+r-1}=\sum\limits_{n=0}^{\infty}(n+r+1)(n+r+2)a_{n+2}x^{n+r}

Plugging it into the equation, we get

2x(1x)n=0(n+r+1)(n+r+2)an+2xn+r+(1x)n=0(n+r+1)an+1xn+r+3n=0anxn+r=02x(1-x)\sum\limits_{n=0}^{\infty}(n+r+1)(n+r+2)a_{n+2}x^{n+r}+(1-x)\sum\limits_{n=0}^{\infty}(n+r+1)a_{n+1}x^{n+r}+3\sum\limits_{n=0}^{\infty}a_nx^{n+r}=0

n=02(n+r+1)(n+r+2)an+2xn+r+1n=02(n+r+1)(n+r+2)an+2xn+r+2+\sum\limits_{n=0}^{\infty}2(n+r+1)(n+r+2)a_{n+2}x^{n+r+1}-\sum\limits_{n=0}^{\infty}2(n+r+1)(n+r+2)a_{n+2}x^{n+r+2}+

+n=0(n+r+1)an+1xn+rn=0(n+r+1)an+1xn+r+1+3n=0anxn+r=0+\sum\limits_{n=0}^{\infty}(n+r+1)a_{n+1}x^{n+r}-\sum\limits_{n=0}^{\infty}(n+r+1)a_{n+1}x^{n+r+1}+3\sum\limits_{n=0}^{\infty}a_nx^{n+r}=0

n=12(n+r+1)(n+r)an+1xn+rn=22(n+r1)(n+r)anxn+r+\sum\limits_{n=1}^{\infty}2(n+r+1)(n+r)a_{n+1}x^{n+r}-\sum\limits_{n=2}^{\infty}2(n+r-1)(n+r)a_{n}x^{n+r}+

+n=0(n+r+1)an+1xn+rn=1(n+r)anxn+r+3n=0anxn+r=0+\sum\limits_{n=0}^{\infty}(n+r+1)a_{n+1}x^{n+r}-\sum\limits_{n=1}^{\infty}(n+r)a_{n}x^{n+r}+3\sum\limits_{n=0}^{\infty}a_nx^{n+r}=0


For xrx^r we get

(r+1)a1+3a0=0(r+1)a_{1}+3a _0=0

For xr+1x^{r+1}

2(r+2)(r+1)a2+(r+2)a1(r+1)a1+3a1=02(r+2)(r+1)a_2+(r+2)a_1-(r+1)a_1+3a_1=0




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS