Problem:
x 2 ∂ 2 y ∂ x 2 + x ( x − 1 ) ∂ y ∂ x + ( 1 − x ) y = 0 x^2\dfrac{\partial^2 y}{\partial x^2}+x(x-1)\dfrac{\partial y}{\partial x}+(1-x)y=0 x 2 ∂ x 2 ∂ 2 y + x ( x − 1 ) ∂ x ∂ y + ( 1 − x ) y = 0 (1)
Let's image solution of the task in the next view:
y = x σ ( a 0 + a 1 x + a 2 x 2 + . . . a k x k + . . . ) y=x^\sigma(a_{0}+a_{1}x+a_{2}x^2+...a_{k}x^k+...) y = x σ ( a 0 + a 1 x + a 2 x 2 + ... a k x k + ... ) (2)
Now subsitute equation (2) into equation (1):
x 2 ( σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x s i g m a − 1 + ( σ + 2 ) × ( σ + 1 ) × a 2 x σ + . . . ) + x ( x − 1 ) ( σ × a 0 x σ − 1 + ( σ + 1 ) × a 1 x σ + ( σ + 2 ) × a 2 x σ + 1 + . . . . ) + ( 1 − x ) ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + . . . ) = 0 x^2
(\sigma\times(\sigma-1)\times a_{0}x^{\sigma-2} +
(\sigma+1)\times\sigma\times a_{1}x^{sigma-1} +
(\sigma+2)\times(\sigma+1)\times a_{2} x^{\sigma}+ ...) +
x(x-1)
(\sigma\times a_{0}x^{\sigma-1} +
(\sigma+1)\times a_{1}x^{\sigma} +
(\sigma+2)\times a_{2}x^{\sigma+1}+....) +
(1-x)
(a_{0}x^{\sigma} + a_{1}x^{\sigma+1} + a_{2}x^{\sigma+2}+...)=0 x 2 ( σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x s i g ma − 1 + ( σ + 2 ) × ( σ + 1 ) × a 2 x σ + ... ) + x ( x − 1 ) ( σ × a 0 x σ − 1 + ( σ + 1 ) × a 1 x σ + ( σ + 2 ) × a 2 x σ + 1 + .... ) + ( 1 − x ) ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + ... ) = 0
Or:
( a 0 x σ × σ × ( σ − 1 ) + a 1 x σ + 1 × σ × ( σ + 1 ) + a 2 x σ + 2 × ( σ + 1 ) × ( σ + 2 ) + . . . ) + ( a 0 x σ + 1 × σ + a 1 x σ + 2 × ( σ + 1 ) + a 2 x σ + 3 × ( σ + 2 ) + . . . ) − ( a 0 x σ × σ + a 1 x σ + 1 × σ + 1 + a 2 x σ + 2 × ( σ + 2 ) + . . . ) + ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + . . . ) − ( a 0 x σ + 1 + a 1 x σ + 2 + a 2 x σ + 3 + . . . ) = 0 (a_{0}x^{\sigma}\times\sigma\times(\sigma-1) +a_{1}x^{\sigma+1}\times\sigma\times(\sigma+1)+a_2x^{\sigma+2}\times(\sigma+1)\times(\sigma+2)+...) +
(a_0x^{\sigma+1}\times\sigma+a_1x^{\sigma+2}\times(\sigma+1)+a_2x^{\sigma+3}\times(\sigma+2)+...) -
(a_0x^\sigma\times\sigma+a_1x^{\sigma+1}\times{\sigma+1}+a_2x^{\sigma+2}\times(\sigma+2)+...) +
(a_0x^{\sigma}+a_1x^{\sigma+1}+a_2x^{\sigma+2}+...)-(a_0x^{\sigma+1}+a_1x^{\sigma+2}+a_2x^{\sigma+3}+...)=0 ( a 0 x σ × σ × ( σ − 1 ) + a 1 x σ + 1 × σ × ( σ + 1 ) + a 2 x σ + 2 × ( σ + 1 ) × ( σ + 2 ) + ... ) + ( a 0 x σ + 1 × σ + a 1 x σ + 2 × ( σ + 1 ) + a 2 x σ + 3 × ( σ + 2 ) + ... ) − ( a 0 x σ × σ + a 1 x σ + 1 × σ + 1 + a 2 x σ + 2 × ( σ + 2 ) + ... ) + ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + ... ) − ( a 0 x σ + 1 + a 1 x σ + 2 + a 2 x σ + 3 + ... ) = 0
Now equate all coefficient near x σ , x σ + 1 , x σ + 2 , . . . x^{\sigma}, x^{\sigma+1}, x^{\sigma+2},... x σ , x σ + 1 , x σ + 2 , ... to zero:
{ a 0 × σ × ( σ − 1 ) − a 0 × σ + a 0 = 0 a 1 × σ × ( σ + 1 ) + a 0 × σ − a 1 × ( σ + 1 ) + a 1 − a 0 = 0 a 2 × ( σ + 1 ) × ( σ + 2 ) + a 1 × ( σ + 1 ) − a 2 × ( σ + 2 ) + a 2 − a 1 = 0 . . . \begin{cases}
a_0\times\sigma\times(\sigma-1)-a_0\times\sigma+a_0=0\\
a_1\times\sigma\times(\sigma+1)+a_0\times\sigma-a_1\times(\sigma+1)+a_1-a_0=0\\
a_2\times(\sigma+1)\times(\sigma+2)+a_1\times(\sigma+1)-a_2\times(\sigma+2)+a_2-a_1=0\\
...
\end{cases} ⎩ ⎨ ⎧ a 0 × σ × ( σ − 1 ) − a 0 × σ + a 0 = 0 a 1 × σ × ( σ + 1 ) + a 0 × σ − a 1 × ( σ + 1 ) + a 1 − a 0 = 0 a 2 × ( σ + 1 ) × ( σ + 2 ) + a 1 × ( σ + 1 ) − a 2 × ( σ + 2 ) + a 2 − a 1 = 0 ...
From the first equation (we take that a 0 ≠ 0 a_0\not=0 a 0 = 0 )we get: ( σ − 1 ) 2 = 0 = > σ = 1 (\sigma-1)^2=0=>\sigma=1 ( σ − 1 ) 2 = 0 => σ = 1
Let's substitute this value to our system (3). Now we have:
{ a 0 ≠ 0 a 1 = 0 a 2 = 0 . . . \begin{cases}
a_0\not=0 \\
a_1=0 \\
a_2=0\\
...
\end{cases} ⎩ ⎨ ⎧ a 0 = 0 a 1 = 0 a 2 = 0 ...
So we have that all coefficient a k a_k a k (except a 0 a_0 a 0 ) are equal zero. That means that:
y = a 0 x σ y=a_0x^\sigma y = a 0 x σ
Also we know that σ = 1 \sigma=1 σ = 1 . So solution of this problem is:
y = a 0 x y=a_0x y = a 0 x ,
where a 0 a_0 a 0 is a different constant.
Comments