Question #111414
X^2y"+x(x-1) y'+(1-x)y=0 solve by series solution
1
Expert's answer
2020-04-22T19:41:06-0400

Problem:

x22yx2+x(x1)yx+(1x)y=0x^2\dfrac{\partial^2 y}{\partial x^2}+x(x-1)\dfrac{\partial y}{\partial x}+(1-x)y=0  (1)

Let's image solution of the task in the next view:

y=xσ(a0+a1x+a2x2+...akxk+...)y=x^\sigma(a_{0}+a_{1}x+a_{2}x^2+...a_{k}x^k+...) (2)

Now subsitute equation (2) into equation (1):

x2(σ×(σ1)×a0xσ2+(σ+1)×σ×a1xsigma1+(σ+2)×(σ+1)×a2xσ+...)+x(x1)(σ×a0xσ1+(σ+1)×a1xσ+(σ+2)×a2xσ+1+....)+(1x)(a0xσ+a1xσ+1+a2xσ+2+...)=0x^2 (\sigma\times(\sigma-1)\times a_{0}x^{\sigma-2} + (\sigma+1)\times\sigma\times a_{1}x^{sigma-1} + (\sigma+2)\times(\sigma+1)\times a_{2} x^{\sigma}+ ...) + x(x-1) (\sigma\times a_{0}x^{\sigma-1} + (\sigma+1)\times a_{1}x^{\sigma} + (\sigma+2)\times a_{2}x^{\sigma+1}+....) + (1-x) (a_{0}x^{\sigma} + a_{1}x^{\sigma+1} + a_{2}x^{\sigma+2}+...)=0

Or:

(a0xσ×σ×(σ1)+a1xσ+1×σ×(σ+1)+a2xσ+2×(σ+1)×(σ+2)+...)+(a0xσ+1×σ+a1xσ+2×(σ+1)+a2xσ+3×(σ+2)+...)(a0xσ×σ+a1xσ+1×σ+1+a2xσ+2×(σ+2)+...)+(a0xσ+a1xσ+1+a2xσ+2+...)(a0xσ+1+a1xσ+2+a2xσ+3+...)=0(a_{0}x^{\sigma}\times\sigma\times(\sigma-1) +a_{1}x^{\sigma+1}\times\sigma\times(\sigma+1)+a_2x^{\sigma+2}\times(\sigma+1)\times(\sigma+2)+...) + (a_0x^{\sigma+1}\times\sigma+a_1x^{\sigma+2}\times(\sigma+1)+a_2x^{\sigma+3}\times(\sigma+2)+...) - (a_0x^\sigma\times\sigma+a_1x^{\sigma+1}\times{\sigma+1}+a_2x^{\sigma+2}\times(\sigma+2)+...) + (a_0x^{\sigma}+a_1x^{\sigma+1}+a_2x^{\sigma+2}+...)-(a_0x^{\sigma+1}+a_1x^{\sigma+2}+a_2x^{\sigma+3}+...)=0

Now equate all coefficient near xσ,xσ+1,xσ+2,...x^{\sigma}, x^{\sigma+1}, x^{\sigma+2},...  to zero:

{a0×σ×(σ1)a0×σ+a0=0a1×σ×(σ+1)+a0×σa1×(σ+1)+a1a0=0a2×(σ+1)×(σ+2)+a1×(σ+1)a2×(σ+2)+a2a1=0...\begin{cases} a_0\times\sigma\times(\sigma-1)-a_0\times\sigma+a_0=0\\ a_1\times\sigma\times(\sigma+1)+a_0\times\sigma-a_1\times(\sigma+1)+a_1-a_0=0\\ a_2\times(\sigma+1)\times(\sigma+2)+a_1\times(\sigma+1)-a_2\times(\sigma+2)+a_2-a_1=0\\ ... \end{cases}

From the first equation (we take that a00a_0\not=0 )we get: (σ1)2=0=>σ=1(\sigma-1)^2=0=>\sigma=1

Let's substitute this value to our system (3). Now we have:

{a00a1=0a2=0...\begin{cases} a_0\not=0 \\ a_1=0 \\ a_2=0\\ ... \end{cases}

So we have that all coefficient aka_k (except a0a_0 ) are equal zero. That means that:

y=a0xσy=a_0x^\sigma

Also we know that σ=1\sigma=1. So solution of this problem is:

y=a0xy=a_0x,

where a0a_0 is a different constant.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS