Problem:
x2∂x2∂2y+x(x−1)∂x∂y+(1−x)y=0 (1)
Let's image solution of the task in the next view:
y=xσ(a0+a1x+a2x2+...akxk+...) (2)
Now subsitute equation (2) into equation (1):
x2(σ×(σ−1)×a0xσ−2+(σ+1)×σ×a1xsigma−1+(σ+2)×(σ+1)×a2xσ+...)+x(x−1)(σ×a0xσ−1+(σ+1)×a1xσ+(σ+2)×a2xσ+1+....)+(1−x)(a0xσ+a1xσ+1+a2xσ+2+...)=0
Or:
(a0xσ×σ×(σ−1)+a1xσ+1×σ×(σ+1)+a2xσ+2×(σ+1)×(σ+2)+...)+(a0xσ+1×σ+a1xσ+2×(σ+1)+a2xσ+3×(σ+2)+...)−(a0xσ×σ+a1xσ+1×σ+1+a2xσ+2×(σ+2)+...)+(a0xσ+a1xσ+1+a2xσ+2+...)−(a0xσ+1+a1xσ+2+a2xσ+3+...)=0
Now equate all coefficient near xσ,xσ+1,xσ+2,... to zero:
⎩⎨⎧a0×σ×(σ−1)−a0×σ+a0=0a1×σ×(σ+1)+a0×σ−a1×(σ+1)+a1−a0=0a2×(σ+1)×(σ+2)+a1×(σ+1)−a2×(σ+2)+a2−a1=0...
From the first equation (we take that a0=0 )we get: (σ−1)2=0=>σ=1
Let's substitute this value to our system (3). Now we have:
⎩⎨⎧a0=0a1=0a2=0...
So we have that all coefficient ak (except a0 ) are equal zero. That means that:
y=a0xσ
Also we know that σ=1. So solution of this problem is:
y=a0x,
where a0 is a different constant.
Comments