Question #110319
Solve: z( p − q )= z^2 +( x + (y ^2))
1
Expert's answer
2020-04-22T14:14:38-0400

pzqz=z2+(x+y)2dxz=dyz=dzz2+(x+y)21)dxz=dyz    dx=dy    dx=dy    x+c1=y    c1=x+y2)dxz=dzz2+(x+y)2    dxz=dzz2+c12    dx=zdzz2+c12    dx=zdzz2+c12    dx=12d(z2+c12)z2+c12    12lnz2+c12=x+12lnc2    lnz2+c12=2x+lnc2    z2+c12=c2e2x    z2+(x+y)2=c2e2x    c2=z2+(x+y)2e2xpz-qz=z^2+(x+y)^2\\ \frac{dx}{z}=\frac{dy}{-z}=\frac{dz}{z^2+(x+y)^2}\\ 1) \frac{dx}{z}=\frac{dy}{-z}\implies\\ -dx=dy\implies -\int dx=\int dy\implies\\ -x+c_1=y \implies c_1=x+y\\ 2) \frac{dx}{z}=\frac{dz}{z^2+(x+y)^2} \implies\\ \frac{dx}{z}=\frac{dz}{z^2+c_1^2}\implies\\ dx=\frac{zdz}{z^2+c_1^2} \implies\\ \int dx=\int\frac{zdz}{z^2+c_1^2}\implies\\ \int dx=\frac{1}{2}\int\frac{d(z^2+c_1^2)}{z^2+c_1^2}\implies\\ \frac{1}{2}\ln|z^2+c_1^2|=x+\frac{1}{2}\ln|c_2|\implies\\ \ln|z^2+c_1^2|=2x+\ln|c_2|\implies\\ z^2+c_1^2=c_2e^{2x}\implies\\ z^2+(x+y)^2=c_2e^{2x}\implies\\ c_2=\frac{z^2+(x+y)^2}{e^{2x}}\\

Solution of equation is

F(x+y,z2+(x+y)2e2x)=0F(x+y, \frac{z^2+(x+y)^2}{e^{2x}})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS