pz−qz=z2+(x+y)2zdx=−zdy=z2+(x+y)2dz1)zdx=−zdy⟹−dx=dy⟹−∫dx=∫dy⟹−x+c1=y⟹c1=x+y2)zdx=z2+(x+y)2dz⟹zdx=z2+c12dz⟹dx=z2+c12zdz⟹∫dx=∫z2+c12zdz⟹∫dx=21∫z2+c12d(z2+c12)⟹21ln∣z2+c12∣=x+21ln∣c2∣⟹ln∣z2+c12∣=2x+ln∣c2∣⟹z2+c12=c2e2x⟹z2+(x+y)2=c2e2x⟹c2=e2xz2+(x+y)2
Solution of equation is
F(x+y,e2xz2+(x+y)2)=0
Comments