Question #110097
Solve the differential equation
dy/dx + (x/1-x^2)y = x√y, y(0) = 1.
1
Expert's answer
2020-04-20T12:36:26-0400

Given

y+(x1x2)y=xy1/2y' +\left( \frac{x}{1-x^2}\right)y=xy^{1/2}

This is a Bernoli equation , multiply both sides by y1/2y^{-1/2} then

y1/2y+(x1x2)y1/2=xy^{-1/2}y' +\left( \frac{x}{1-x^2}\right)y^{1/2}=x

Let z=y1/2,     ,z=12y1/2yz=y^{1/2},\ \ \ \ \ ,z'= \frac{1}{2}y^{-1/2}y' , then

2z+(x1x2)z=xz+12(x1x2)z=x22z' +\left( \frac{x}{1-x^2}\right)z=x\\ z' +\frac{1}{2}\left( \frac{x}{1-x^2}\right)z=\frac{x}{2}

This is a linear equation with integral coefficient

μ=e(x2(1x2))dx    =e14ln(1x2)    =(1x2)1/4\mu= e^{\int\left( \frac{ x}{2(1-x^2)}\right)dx }\\ \ \ \ \ = e^{-\frac{1}{4}\ln (1-x^2)}\\ \ \ \ \ =(1-x^2)^{-1/4}

Then the general solution is

μz        =12μ(x)dx(1x2)1/4z=12x(1x2)1/4dx(1x2)1/4z=13(1x2)34+C(1x2)1/4y=13(1x2)34+C\mu z \ \ \ \ \ \ \ \ = \frac{1}{2} \int \mu (x)dx\\ (1-x^2)^{-1/4}z= \frac{1}{2} \int x(1-x^2)^{-1/4}dx\\ (1-x^2)^{-1/4}z=-\frac{1}{3}\left(1-x^2\right)^{\frac{3}{4}}+C\\ (1-x^2)^{-1/4}\sqrt{y}=-\frac{1}{3}\left(1-x^2\right)^{\frac{3}{4}}+C

Since y(0)=1   C=43y(0)=1\ \ \ \to C= \frac{4}{3}

(1x2)1/4y=13(1x2)34+43           y=13(1x2)+43(1x2)1/4               y=[13(1x2)+43(1x2)1/4]2(1-x^2)^{-1/4}\sqrt{y}=-\frac{1}{3}\left(1-x^2\right)^{\frac{3}{4}}+\frac{4}{3}\\ \ \ \ \ \ \ \ \ \ \ \ \sqrt{y}= \frac{-1}{3}(1-x^2) +\frac{4}{3}(1-x^2)^{1/4}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y=\left[ \frac{-1}{3}(1-x^2) +\frac{4}{3}(1-x^2)^{1/4}\right]^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS