Question #109660
Solve the differential equation y"=1+(y')^2
1
Expert's answer
2020-04-15T17:54:23-0400

Given y=1+y2.y''=1+y'^2.

Put z=y.z = y'. Then the given equation becomes,

z=1+z2z' = 1+ z^{2} .

dzdx=1+z2dz1+z2=dx\dfrac{dz}{dx}=1+z^2\\ \dfrac{dz}{1+z^2}=dx

Integrating both sides, we get

arctanz=x+c1z=tan(x+c1)y=tan(x+c1)  (Using the substitution we have taken)dydx=tan(x+c1)Integrating both sides with respect to x,y=lnsec(x+c1)+c2\arctan z = x + c_{1}\\ z = \tan (x+c_{1})\\ y'=\tan (x+c_{1})~~\text{(Using the substitution we have taken)}\\ \dfrac{dy}{dx}=\tan (x+c_{1})\\ \text{Integrating both sides with respect to $x$,}\\ y = \ln\sec (x+c_{1})+c_{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS