Question #109453
Dy/dx+{x/(1-x^2)}y=x√y,y(0)=1
1
Expert's answer
2020-04-20T11:56:11-0400

dydx+x1x2y=xy,y(0)=1\frac {dy}{dx}+\frac {x}{1-x^2}y=x\sqrt{y} , y(0)=1

Trivial solution y=0y=0, but there is y(0)=1y(0)=1 . That's why we can't take it.

Further we consider that y0.y\neq0.

y+x1x2y=xyyy+xy1x2=xy'+\frac{x}{1-x^2}y=x\sqrt{y}\\ \frac{y'}{\sqrt{y}}+\frac{x\sqrt{y}}{1-x^2}=x


Let y=z\sqrt{y}=z, then z=(y)=y2yz'=(\sqrt{y})'=\frac{y'}{2\sqrt{y}} and yy=2z\frac{y'}{\sqrt{y}}=2z'

2z+xz1x2=x2z'+\frac{xz}{1-x^2}=x


Let z=uvz=uv, then z=uv+uvz'=u'v+uv'

2uv+2uv+xuv1x2=x2uv+u(2v+xv1x2)=x2u'v+2uv'+\frac{xuv}{1-x^2}=x\\ 2u'v+u(2v'+\frac{xv}{1-x^2})=x (1)


2v+xv1x2=02v=xvx212dvdx=xvx212dvv=xdxx212dvv=xdxx212log(v)=1/2log(x21)v=x2142v'+\frac{xv}{1-x^2}=0\\ 2v'=\frac{xv}{x^2-1}\\ 2\frac{dv}{dx}=\frac{xv}{x^2-1}\\ 2\frac{dv}{v}=\frac{xdx}{x^2-1}\\ 2\int\frac{dv}{v}=\int\frac{xdx}{x^2-1}\\ 2log(|v|)=1/2log(|x^2-1|)\\ v=\sqrt[4]{|x^2-1|}


Now (1) is 2ux214=x2u'\sqrt[4]{|x^2-1|}=x

2dudv=xx2142du=xdxx2142du=xdxx2142du=12dx2x214u=13x2143+C2\frac{du}{dv}=\frac{x}{\sqrt[4]{|x^2-1|}}\\ 2du=\frac{xdx}{\sqrt[4]{|x^2-1|}}\\ 2\int du=\int \frac{xdx}{\sqrt[4]{|x^2-1|}}\\ 2\int du=\frac{1}{2}\int \frac{dx^2}{\sqrt[4]{|x^2-1|}}\\ u=\frac{1}{3}\sqrt[4]{|x^2-1|}^3+C


Finally

z=uv=x21413(x2143+C)=13(x21)+Cx214z=uv=\sqrt[4]{|x^2-1|}\frac{1}{3}(\sqrt[4]{|x^2-1|}^3+C)=\frac{1}{3}(|x^2-1|)+C\sqrt[4]{|x^2-1|}

y=13(x21)+Cx214y=(13(x21)+Cx214)2\sqrt{y}=\frac{1}{3}(|x^2-1|)+C\sqrt[4]{|x^2-1|}\\ y=(\frac{1}{3}(|x^2-1|)+C\sqrt[4]{|x^2-1|})^2


y(0)=1,    1=(131+C14)21=(13+C)2y(0)=1, \implies \\ 1=(\frac{1}{3}|-1|+C\sqrt[4]{|-1|})^2\\ 1=(\frac{1}{3}+C)^2

C=23C=\frac{2}{3} or C=43C=-\frac{4}{3}


y=(13(x21)+23x214)2y=(\frac{1}{3}(|x^2-1|)+\frac{2}{3}\sqrt[4]{|x^2-1|})^2 or

y=(13(x21)43x214)2y=(\frac{1}{3}(|x^2-1|)-\frac{4}{3}\sqrt[4]{|x^2-1|})^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS