fx(x,y)=y3⋅(x2+y2)2x2+y2−2x2=y3(x2+y2)2y2−x2, (x,y)=(0,0)
fy(x,y)=x⋅(x2+y2)23y2(x2+y2)−2y4=xy2(x2+y2)23x2+y2, (x,y)=(0,0)
The partial derivatives are defined at (0, 0).
fx(0,0)=h→0limh1(f(0+h,0)−f(0,0))=h→0lim(0−0)=0
fy(0,0)=h→0limh1(f(0,0+h)−f(0,0))=h→0lim(0−0)=0 Therefore
fx(0,0)=fy(0,0)=0
Let x=rcosθ,y=rsinθ
(x,y)→(0,0)limfx(x,y)=r→0lim[r3sin3θ(r2sin2θ+r2cos2θ)2r2sin2θ−r2cos2θ]==r→0lim[r3sin3θ(−cos(2θ))]=0
(x,y)→(0,0)limfx(x,y)=0=fx(0,0)
fx(x,y) is continuous at (0, 0)
Comments