Question #108914
find fx(0,0) and fx (x,y), where (x,y)≠(0,0) for the following function f(x,y)= {xy^3/(x^2+y^2), (x,y) ≠(0,0) 0, (x,y)=(0,0) is fx continuous at (0,0)?
1
Expert's answer
2020-04-10T17:58:33-0400
fx(x,y)=y3x2+y22x2(x2+y2)2=y3y2x2(x2+y2)2, (x,y)(0,0)f_x(x,y)=y^3\cdot{x^2+y^2-2x^2 \over (x^2+y^2)^2}=y^3{y^2-x^2 \over (x^2+y^2)^2},\ (x,y)\not=(0,0)

fy(x,y)=x3y2(x2+y2)2y4(x2+y2)2=xy23x2+y2(x2+y2)2, (x,y)(0,0)f_y(x,y)=x\cdot{3y^2(x^2+y^2)-2y^4\over (x^2+y^2)^2}=xy^2{3x^2+y^2\over (x^2+y^2)^2},\ (x,y)\not=(0,0)

The partial derivatives are defined at (0, 0).


fx(0,0)=limh01h(f(0+h,0)f(0,0))=limh0(00)=0f_x(0,0)=\lim\limits_{h\to0}{1\over h}(f(0+h,0)-f(0,0))=\lim\limits_{h\to0}(0-0)=0

fy(0,0)=limh01h(f(0,0+h)f(0,0))=limh0(00)=0f_y(0,0)=\lim\limits_{h\to0}{1\over h}(f(0,0+h)-f(0,0))=\lim\limits_{h\to0}(0-0)=0

Therefore


fx(0,0)=fy(0,0)=0f_x(0,0)=f_y(0,0)=0

Let x=rcosθ,y=rsinθx=rcos\theta, y=r\sin\theta


lim(x,y)(0,0)fx(x,y)=limr0[r3sin3θr2sin2θr2cos2θ(r2sin2θ+r2cos2θ)2]=\lim\limits_{(x,y)\to(0,0)}f_x(x,y)=\lim\limits_{r\to0}\bigg[r^3\sin^3\theta{r^2\sin^2\theta-r^2\cos^2\theta \over (r^2\sin^2\theta+r^2\cos^2\theta)^2}\bigg]==limr0[r3sin3θ(cos(2θ))]=0=\lim\limits_{r\to0}\big[r^3\sin^3\theta(-\cos(2\theta))\big]=0

lim(x,y)(0,0)fx(x,y)=0=fx(0,0)\lim\limits_{(x,y)\to(0,0)}f_x(x,y)=0=f_x(0,0)



fx(x,y)f_x(x,y) is continuous at (0, 0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS