QUESTION(i)
To find critical points, we must solve the system
"\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{dx}{dt}=x^2-y\\\\[0.3cm]\n\\displaystyle\\frac{dy}{dt}=x+y\\end{array}\\right.\\longrightarrow\n\\left\\{\\begin{array}{l}\nu(x,y)=x^2-y\\\\[0.3cm]\nv(x,y)=x+y\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\nx^2-y=0\\\\[0.3cm]\nx+y=0\n\\end{array}\\right.\\longrightarrow\n\\left\\{\\begin{array}{l}\ny=x^2\\\\[0.3cm]\nx+x^2=0\n\\end{array}\\right.\\longrightarrow\\left\\{\\begin{array}{l}\ny=x^2\\\\[0.3cm]\nx(x+1)=0\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\ny=x^2\\\\[0.3cm]\nx=0\\quad\\text{or}\\quad x=-1\n\\end{array}\\right.\\longrightarrow\\\\[0.3cm]\n\\boxed{A(0,0)\\,\\,\\,\\text{and}\\,\\,\\,B(-1,1)-\\text{the real critical points of the system\n}}"
QUESTION(ii)
Next we find the Jacobian matrix of
"J(x,y)=\\left(\\begin{array}{cc}\n\\displaystyle\\frac{\\partial u}{\\partial x} &\\displaystyle\\frac{\\partial u}{\\partial y}\\\\[0.3cm]\n\\displaystyle\\frac{\\partial v}{\\partial x} &\\displaystyle\\frac{\\partial v}{\\partial y} \n\\end{array}\\right)=\n\\left(\\begin{array}{cc}\n2x&-1\\\\[0.3cm]\n1 &1 \\end{array}\\right)"
Hints on remaining parts
- Find the eigenvalues of the Jacobian at each critical point.
- Classify the stability using the following.
In our case,
"A(0,0) : J(0,0)=\n\\left(\\begin{array}{cc}\n0&-1\\\\[0.3cm]\n1 &1 \\end{array}\\right)\\\\[0.3cm]\n\\left|\\begin{array}{cc}\n0-\\lambda&-1\\\\[0.3cm]\n1 &1-\\lambda \\end{array}\\right|=0-\\text{characteristic equation}\\\\[0.3cm]\n-\\lambda(1-\\lambda)-1\\cdot(-1)=-\\lambda+\\lambda^2+1=0\\\\[0.3cm]\nD=(-1)^2-4\\cdot1\\cdot1=1-4=-3\\to\\sqrt{D}=i\\sqrt{3}\\\\[0.3cm]\n\\left[\\begin{array}{l}\n\\lambda_1=\\displaystyle\\frac{1+i\\sqrt{3}}{2}\\\\[0.3cm]\n\\lambda_2=\\displaystyle\\frac{1-i\\sqrt{3}}{2}\\end{array}\\right.\\longrightarrow Re(\\lambda_1,\\lambda_2)=\\frac{1}{2}>0"
Conclusion,
The eigenvalues are complex conjugates. Real parts positive - An Unstable Spiral : All trajectories in the neighborhood of the fixed point spiral away from the fixed point with ever increasing radius.
"B(-1,1) : J(-1,1)=\n\\left(\\begin{array}{cc}\n-2&-1\\\\[0.3cm]\n1 &1 \\end{array}\\right)\\\\[0.3cm]\n\\left|\\begin{array}{cc}\n-2-\\lambda&-1\\\\[0.3cm]\n1 &1-\\lambda \\end{array}\\right|=0-\\text{characteristic equation}\\\\[0.3cm]\n(-2-\\lambda)(1-\\lambda)-1\\cdot(-1)=\\\\[0.3cm]\n-2+2\\lambda-\\lambda+\\lambda^2+1=0\\\\[0.3cm]\n\\lambda^2+\\lambda-1=0\\\\[0.3cm]\nD=1^2-4\\cdot1\\cdot(-1)=1+4=5\\to\\sqrt{D}=\\sqrt{5}\\\\[0.3cm]\n\\left[\\begin{array}{l}\n\\lambda_1=\\displaystyle\\frac{-1+\\sqrt{5}}{2}>0,\\lambda_1\\in\\mathbb{R}\\\\[0.3cm]\n\\lambda_2=\\displaystyle\\frac{-1-\\sqrt{5}}{2}<0,\\lambda_2\\in\\mathbb{R}\\end{array}\\right."
Conclusion,
The eigenvalues are real. Eigenvalues opposite sign - An Unstable Saddle Node : rajectories in the general direction of the negative eigenvalue's eigenvector will initially approach the fixed point but will diverge as they approach a region dominated by the positive (unstable) eigenvalue.
ANSWER
(i)
"\\boxed{A(0,0)\\,\\,\\,\\text{and}\\,\\,\\,B(-1,1)-\\text{the real critical points of the system\n}}"
(ii)
"\\boxed{A(0,0)-\\text{An Unstable Spiral}}\\\\[0.3cm]\n\\boxed{B(-1,1)-\\text{An Unstable Saddle Node}}"
Comments
Leave a comment