1 STEP: We rewrite this equation using the notation
∂x∂≡Dand∂y∂=D′⟶6uxx−5uxy−6uyy=52⋅e3x+2y⟶(6D2−5DD′−6D′2)u=52⋅e3x+2y
2 STEP: Factor the resulting square expression
Note: I will use the letters x and y so that there is no confusion between the operators D , D′ and the designation of the discriminant D :
6D2−5DD′−6D′2⟶6x2−5yx−6y2=0a=6b=−5yc=−6y2∣∣D=b2−4ac=(−5y)2−4⋅6⋅(−6y)D=25y2+144y2=169y2⟶D=13y⎣⎡x1=2a−b−D=125y−13y=−32yx2=2a−b+D=125y+13y=23y6x2−5xy−6y=6⋅(x−(−32y))⋅(x−23y)6D2−5DD′−6D′2=6⋅(D+32⋅D′)⋅(D−23⋅D′)
3 STEP: A bit of theory (without proof)
Suppose we need to solve a partial differential equation
f(D,D′)u=φ(x,y)The solution consists of two parts:
u(x,y)=C.F.+P.I.,where[C.F.−the complementary functionP.I.−Particular Integral
To find the complementary function (C.F.)
Put D=m and D′=1 in f(D,D′)=0 , then we get an equation, which is called the auxillary equation.
∴ the auxillary equation is f(m,1)=0 i.e.,
a0mn+a1mn−1+⋅⋅⋅+an=0
Let the roots of this equation be m1 , m2 , . . . , mn . If the roots are real (or imaginary) and distinct, then
C.F.=f1(y+m1x)+f2(y+m2x)+⋅⋅⋅+fn(y+mnx)
To find Particular Integral (P.I.)
If
φ(x,y)=eax+by
then
P.I.=f(D,D′)1⋅eax+by=f(a,b)1⋅eax+by,providedf(a,b)=0.
If f(a,b)=0 , then
P.I.=x⋅f′(D,D′)1⋅eax+by,wheref′(D,D′)is the partial derivative off(D,D′)w.r.tD.
4 STEP: Put theory into practice
С.F.:(D+32⋅D′)⋅(D−23⋅D′)u=0⟶C.F.=f1(y−32x)+f2(y+23x)P.I.:P.I.=(D+32⋅D′)⋅(D−23⋅D′)1⋅652⋅e3x+2yP.I.=(3+32⋅2)⋅(3−23⋅2)1⋅652⋅e3x+2yP.I.=(3+34)⋅(3−3)1=0⋅652⋅e3x+2y
This means that you must first differentiate the expression (6D2−5DD′−6D′2) by D , so
∂D∂(6D2−5DD′−6D′2)=12D−5D′
Then,
P.I.:P.I.=12D−5D′1⋅52⋅e3x+2yP.I.=12⋅3−5⋅21⋅52⋅e3x+2yP.I.=2652⋅e3x+2y≡2⋅e3x+2y Conclusion,
u(x,y)=C.F.+P.I.⟶u(x,y)=f1(y−32x)+f2(y+23x)+2⋅e3x+2y
ANSWER
u(x,y)=f1(y−32x)+f2(y+23x)+2⋅e3x+2y
Comments
Dear Mohammad Khursheed Ali, please use the panel for submitting a new question.
Find the general solution of uxy-ux=ex