Question #108831
3. Find the general solution of the partial differential equation

6uxx −5uxy −6uyy =52e^3x+2y
1
Expert's answer
2020-04-14T13:43:46-0400

1 STEP: We rewrite this equation using the notation



xDandy=D6uxx5uxy6uyy=52e3x+2y(6D25DD6D2)u=52e3x+2y\frac{\partial}{\partial x}\equiv D\quad\text{and}\quad\frac{\partial}{\partial y}=D'\longrightarrow\\[0.3cm] 6u_{xx}-5u_{xy}-6u_{yy}=52\cdot e^{3x+2y}\longrightarrow\\[0.3cm] \boxed{\left(6D^2-5DD'-6D'^2\right)u=52\cdot e^{3x+2y}}

2 STEP: Factor the resulting square expression

Note: I will use the letters xx and yy so that there is no confusion between the operators DD , DD' and the designation of the discriminant DD :



6D25DD6D26x25yx6y2=0a=6b=5yc=6y2D=b24ac=(5y)246(6y)D=25y2+144y2=169y2D=13y[x1=bD2a=5y13y12=2y3x2=b+D2a=5y+13y12=3y26x25xy6y=6(x(2y3))(x3y2)6D25DD6D2=6(D+23D)(D32D)6D^2-5DD'-6D'^2\longrightarrow 6x^2-5yx-6y^2=0\\[0.3cm] \left.\begin{array}{l} a=6\\ b=-5y\\ c=-6y^2 \end{array}\right| D=b^2-4ac=(-5y)^2-4\cdot 6\cdot(-6y)\\[0.3cm] D=25y^2+144y^2=169y^2\longrightarrow\sqrt{D}=13y\\[0.3cm] \left[\begin{array}{l} x_1=\displaystyle\frac{-b-\sqrt{D}}{2a}=\displaystyle\frac{5y-13y}{12}=-\displaystyle\frac{2y}{3}\\[0.3cm] x_2=\displaystyle\frac{-b+\sqrt{D}}{2a}=\displaystyle\frac{5y+13y}{12}=\displaystyle\frac{3y}{2} \end{array}\right.\\[0.3cm] 6x^2-5xy-6y=6\cdot\left(x-\left(-\frac{2y}{3}\right)\right)\cdot\left(x-\frac{3y}{2}\right)\\[0.3cm] \boxed{6D^2-5DD'-6D'^2=6\cdot\left(D+\frac{2}{3}\cdot D'\right)\cdot\left(D-\frac{3}{2}\cdot D'\right)}

3 STEP: A bit of theory (without proof)

Suppose we need to solve a partial differential equation



f(D,D)u=φ(x,y)f\left(D,D'\right)u=\varphi(x,y)

The solution consists of two parts:



u(x,y)=C.F.+P.I.,where[C.F.the complementary functionP.I.Particular Integral u(x,y)=C.F.+P.I.,\,\,\text{where}\\[0.31cm] \left[\begin{array}{l} C.F.-\text{the complementary function}\\[0.3cm] P.I.-\text{Particular Integral } \end{array}\right.



To find the complementary function (C.F.)

Put D=mD=m and D=1D'=1 in f(D,D)=0f\left(D, D'\right)=0 , then we get an equation, which is called the auxillary equation.

∴ the auxillary equation is f(m,1)=0f(m,1)=0 i.e.,



a0mn+a1mn1++an=0a_0m^n + a_1m^{n−1} + · · · + a_n = 0

Let the roots of this equation be m1m_1 , m2m_2 , . . . , mnm_n . If the roots are real (or imaginary) and distinct, then



C.F.=f1(y+m1x)+f2(y+m2x)++fn(y+mnx)C.F.=f_1(y+m_1x)+f_2(y+m_2x)+ · · · +f_n(y+m_nx)



To find Particular Integral (P.I.)

If



φ(x,y)=eax+by\varphi(x, y)=e^{ax+by}

then



P.I.=1f(D,D)eax+by=1f(a,b)eax+by,providedf(a,b)0.P.I.=\frac{1}{f\left(D,D'\right)}\cdot e^{ax+by}=\frac{1}{f(a,b)}\cdot e^{ax+by},\text{provided} f(a, b)\neq0.

If f(a,b)=0f(a,b)=0 , then


P.I.=x1f(D,D)eax+by,wheref(D,D)is the partial derivative off(D,D)w.r.tD.P.I.=x\cdot\frac{1}{f'\left(D, D'\right)}\cdot e^{ax+by},\\[0.3cm] \text{where}\,\,\,f'\left(D, D'\right)\,\,\text{is the partial derivative of} \,\,f\left(D, D'\right) w.r.t \,\,D.

4 STEP: Put theory into practice


С.F.:(D+23D)(D32D)u=0C.F.=f1(y2x3)+f2(y+3x2)P.I.:P.I.=1(D+23D)(D32D)526e3x+2yP.I.=1(3+232)(3322)526e3x+2yP.I.=1(3+43)(33)=0526e3x+2yС.F. :\left(D+\frac{2}{3}\cdot D'\right)\cdot\left(D-\frac{3}{2}\cdot D'\right)u=0\longrightarrow\\[0.3cm] \boxed{C.F.=f_1\left(y-\frac{2x}{3}\right)+f_2\left(y+\frac{3x}{2}\right)}\\[0.3cm] P.I. : P.I.=\frac{1}{\left(D+\frac{2}{3}\cdot D'\right)\cdot\left(D-\frac{3}{2}\cdot D'\right)}\cdot\frac{52}{6}\cdot e^{3x+2y}\\[0.3cm] P.I.=\frac{1}{\left(3+\frac{2}{3}\cdot 2\right)\cdot\left(3-\frac{3}{2}\cdot 2\right)}\cdot\frac{52}{6}\cdot e^{3x+2y}\\[0.3cm] P.I.=\frac{1}{\left(3+\frac{4}{3}\right)\cdot\underbrace{\left(3-3\right)}}_{=0}\cdot\frac{52}{6}\cdot e^{3x+2y}\\[0.3cm]

This means that you must first differentiate the expression (6D25DD6D2)\left(6D^2-5DD'-6D'^2\right) by DD , so



D(6D25DD6D2)=12D5D\frac{\partial}{\partial D}\left(6D^2-5DD'-6D'^2\right)=12D-5D'

Then,



P.I.:P.I.=112D5D52e3x+2yP.I.=11235252e3x+2yP.I.=52e3x+2y262e3x+2yP.I. : P.I.=\frac{1}{12D-5D'}\cdot 52\cdot e^{3x+2y}\\[0.3cm] P.I.=\frac{1}{12\cdot3-5\cdot 2}\cdot 52\cdot e^{3x+2y}\\[0.3cm] P.I.=\frac{52\cdot e^{3x+2y}}{26}\equiv 2\cdot e^{3x+2y}\\[0.3cm]

Conclusion,



u(x,y)=C.F.+P.I.u(x,y)=f1(y2x3)+f2(y+3x2)+2e3x+2yu(x,y)=C.F.+P.I.\longrightarrow\\[0.3cm] \boxed{u(x,y)=f_1\left(y-\frac{2x}{3}\right)+f_2\left(y+\frac{3x}{2}\right)+2\cdot e^{3x+2y}}



ANSWER



u(x,y)=f1(y2x3)+f2(y+3x2)+2e3x+2yu(x,y)=f_1\left(y-\frac{2x}{3}\right)+f_2\left(y+\frac{3x}{2}\right)+2\cdot e^{3x+2y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 21:37

Dear Mohammad Khursheed Ali, please use the panel for submitting a new question.


Mohammad Khursheed Ali
07.06.21, 12:24

Find the general solution of uxy-ux=ex

LATEST TUTORIALS
APPROVED BY CLIENTS