Question #108926
given that y1(x) = x^-1 is one solution of the differential equation 2x^2 dy^2/dx^2 + 3xdy/dx - y=0, x>0 find a second linearly independent solution of the equation
1
Expert's answer
2020-04-10T17:21:57-0400

Look for a solution in the form y=y1z=zxy=y_1z=\frac{z}{x}, then y=zxzx2y'=\frac{z'}{x}-\frac{z}{x^2} and y=z(1x)+2z(1x)+z(1x)=zx2zx2+2zx3y''=z''\left(\frac{1}{x}\right)+2z'\left(\frac{1}{x}\right)'+z\left(\frac{1}{x}\right)''=\frac{z''}{x}-\frac{2z'}{x^2}+\frac{2z}{x^3}

Then 0=2x2(zx2zx2+2zx3)+3x(zxzx2)zx=2zxz0=2x^2\left(\frac{z''}{x}-\frac{2z'}{x^2}+\frac{2z}{x^3}\right)+3x\left(\frac{z'}{x}-\frac{z}{x^2}\right)-\frac{z}{x}=2z''x-z'

Let z=uz'=u, then 2uxu=02u'x-u=0 or 2uuxu2xx2=0\frac{2u'ux-u^2x'}{x^2}=0.

Since 2uu=(u2)2u'u=(u^2)', we have 0=2uuxu2xx2=(u2)xu2xx2=(u2x)0=\frac{2u'ux-u^2x'}{x^2}=\frac{(u^2)'x-u^2x'}{x^2}=\left(\frac{u^2}{x}\right)', so u2x=C\frac{u^2}{x}=C

Then u=Cx=Cxu=\sqrt{Cx}=\sqrt{|C|}\sqrt{x} if C0C\ge 0, or u=Cx=Cxu=\sqrt{Cx}=\sqrt{|C|}\sqrt{-x} if C0C\le 0.

Denote C\sqrt{|C|} by DD, then u=Dxu=D\sqrt{x} or u=Dxu=D\sqrt{-x}

Replace uu by zz': z=Dxz'=D\sqrt{x} or z=Dxz'=D\sqrt{-x}.

Then z=23Dx3+Az=\frac{2}{3}D\sqrt{x^3}+A or z=23Dx3+Az=-\frac{2}{3}D\sqrt{-x^3}+A. In every case z=Bx3+Az=B\sqrt{|x|^3}+A.

Since y=zxy=\frac{z}{x}, we have y=Bs(x)x+Ax=Ex+Axy=Bs(x)\sqrt{|x|}+\frac{A}{x}=E\sqrt{|x|}+\frac{A}{x}, where s(x)={1,if x>00,if x=01,if x<0s(x)=\begin{cases} 1,&\text{if $x>0$}\\ 0,&\text{if $x=0$}\\ -1,&\text{if $x<0$} \end{cases}

So x\sqrt{|x|} is the second solution.

Answer: x\sqrt{|x|}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS