The general solution of the second order nonhomogeneous linear equation can be expressed in the form
where "Y" is any specific function that satisfies the nonhomogeneous equation, and "y_c=C_1y_1+C_2y_2" is a general solution of the corresponding homogeneous equation
The Characteristic Equation
"r_1=1, r_2=2"
The general solution of the corresponding homogeneous equation is
Use Method of Undetermined Coefficients
"Y'=-Ae^{-x}-3B\\sin(3x)+3C\\cos(3x)"
"Y''=Ae^{-x}-9B\\cos(3x)-9C\\sin(3x)"
"Ae^{-x}-9B\\cos(3x)-9C\\sin(3x)+"
"+3Ae^{-x}+9B\\sin(3x)-9C\\cos(3x)+"
"+2Ae^{-x}+2B\\cos(3x)+2C\\sin(3x)=3e^{-x}-10\\cos(3x)"
"6A=3=>A=\\dfrac{1}{2}"
"-7B-9C=-10"
"9B-7C=0"
"B=\\dfrac{7}{13} , C=\\dfrac{9}{13}"
"y(0)=1:"
"1=C_1+C_2+\\dfrac{1}{2}+\\dfrac{7}{13}"
"y'(0)=2:"
"y'=C_1e^{x}+2C_2e^{2x}-\\dfrac{1}{2}e^{-x}-\\dfrac{21}{13}\\sin(3x)+\\dfrac{27}{13}\\cos(3x)"
"2=C_1+2C_2-\\dfrac{1}{2}+\\dfrac{27}{13}"
"1=C_2-1+\\dfrac{20}{13}"
"C_2=\\dfrac{6}{13}"
"y_p=-\\dfrac{1}{2}e^{x}+\\dfrac{6}{13}e^{2x}+\\dfrac{1}{2}e^{-x}+\\dfrac{7}{13}\\cos(3x)+\\dfrac{9}{13}\\sin(3x)"
Comments
Leave a comment