Question #108988
State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example. i) Equation cos(x+y)p + sin(x+y)q = z^2 is a quasi-linear equation. ii) The solution of PDE dz/dx + dz/dy =z^2 is z = -[y+f(x-y)] Iii)(dz/dx)(dz/dy) - (dz/dy)^2 = 0 is a non-linear PDE
Please do it stepwise as I am a noob in differential equations
1
Expert's answer
2020-04-13T11:02:41-0400

QUESTION(i)

Recall the theory.

Definition. Quasi-linear partial differential equations of first order can be written as



P(x,y,z)p+Q(x,y,z)q=R(x,y,z)(1)P(x,y,z)p+Q(x,y,z)q=R(x,y,z)\quad\quad (1)

where P,Q,RP,Q,R are functions of x,yx,y and zz . They do not involve pp or qq . Here, linear means that pp and qq appear to the first degree only.

Definition taken from book : E. Rukmangadachari. Mathematical Methods


In our case,



cos(x+y)p+sin(x+y)q=z2s a quasi-linear equation\boxed{\cos(x+y)p+\sin(x+y)q=z^2-\text{s a quasi-linear equation}}

QUESTION(ii)



z=yf(xy){u=xyzx=fuuxfzy=1fyuy1f(1)zx+zy=f1+f=1z2z=-y-f(x-y)\longrightarrow\\[0.3cm] \left\{\begin{array}{l} u=x-y\\[0.3cm] \displaystyle\frac{\partial z}{\partial x}=-\displaystyle\frac{\partial f}{\partial u}\cdot \displaystyle\frac{\partial u}{\partial x}\equiv-f' \\[0.3cm] \displaystyle\frac{\partial z}{\partial y}=-1-\displaystyle\frac{\partial f}{\partial y}\cdot \displaystyle\frac{\partial u}{\partial y}\equiv-1-f'\cdot(-1) \end{array}\right.\longrightarrow\\[0.3cm] \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=-f' -1+f' =-1\neq z^2



Conclusion,



z=yf(xy)is not a solution to the differential equationzx+zy=z2z=-y-f(x-y)\,\,\text{is not a solution to the differential equation}\\[0.3cm] \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=z^2

QUESTION(iii)


Equation



zxzy(zy)2=0\frac{\partial z}{\partial x}\cdot\frac{\partial z}{\partial y}-\left(\frac{\partial z}{\partial y}\right)^2=0

contains the term (zy)2\left(z'_y\right)^2 therefore it is nonlinear.

Conclusion,



zxzy(zy)2=0is nonlinear\boxed{\frac{\partial z}{\partial x}\cdot\frac{\partial z}{\partial y}-\left(\frac{\partial z}{\partial y}\right)^2=0-\text{is nonlinear}}


ANSWER

(i)



cos(x+y)p+sin(x+y)q=z2s a quasi-linear equation\cos(x+y)p+\sin(x+y)q=z^2-\text{s a quasi-linear equation}

(ii)



z=yf(xy)is not a solution to the differential equationzx+zy=z2z=-y-f(x-y)\,\,\text{is not a solution to the differential equation}\\[0.3cm] \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=z^2

(iii)



zxzy(zy)2=0is nonlinear\frac{\partial z}{\partial x}\cdot\frac{\partial z}{\partial y}-\left(\frac{\partial z}{\partial y}\right)^2=0-\text{is nonlinear}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS