Question #109293
Solve the following initial value problem

d^2 y/dx^2 + dy/dx -2y = -6 sin2x - 18 cos2x
y(0)=2 , y'(0)=2
1
Expert's answer
2020-04-14T17:39:59-0400

The given differential equation is


d2ydx2+dydx−2y=−6sin(2x)−18cos(2x)\frac{d^2y}{dx^2}+\frac{dy}{dx}-2y=-6sin(2x)-18cos(2x)


The auxiliary equation is m2+m−2=0.m^2+m-2=0.

∴ m2+m−2=0\therefore \ m^2+m-2=0

  ⟹  m2+2m−m−2=0\implies m^2+2m-m-2=0

  ⟹  m(m+2)−1(m+2)=0\implies m(m+2)-1(m+2)=0

  ⟹  (m+2)(m−1)=0\implies (m+2)(m-1)=0

  ⟹  m=1,−2\implies m=1,-2 .

∴ C.F.=Aex+Be−2x\therefore \ C.F.=Ae^x+Be^{-2x}

Where ,C.F.=C.F.= Complementary Function.


Now ,

P.I.=1D2+D−2(−6sin2x−18cos2x)P.I.=\frac{1}{D^2+D-2}(-6sin2x-18cos2x)

=1D2+D−2(−6sin2x)+1D2+D−2(−18cos2x)=\frac{1}{D^2+D-2}(-6sin2x)+\frac{1}{D^2+D-2}(-18cos2x)=−6×1−22+D−2sin2x−18×1−22+D−2cos2x=-6×\frac{1}{-2^2+D-2}sin2x-18×\frac{1}{-2^2+D-2}cos2x=−6×1D−6sin2x−18×1D−6cos2x=-6×\frac{1}{D-6}sin2x-18×\frac{1}{D-6}cos2x=−6×D+6D2−36sin2x−18×D+6D2−36cos2x=-6×\frac{D+6}{D^2-36}sin2x-18×\frac{D+6}{D^2-36}cos2x

Multiplying numerator and denomination by D+6D+6 .


=−6×D+6−4−36sin2x−18×D+6−4−36cos2x=-6×\frac{D+6}{-4-36}sin2x-18×\frac{D+6}{-4-36}cos2x

=320×(D+6)sin2x+920×(D+6)cos2x=\frac{3}{20}×(D+6)sin2x+\frac{9}{20}×(D+6)cos2x

=320×(2cos2x+6sin2x)+920×(−2sin2x+6cos2x)=\frac{3}{20}×(2cos2x+6sin2x)+\frac{9}{20}×(-2sin2x+6cos2x)

=cos2x(310+2710)+sin2x(910−910)=cos2x(\frac{3}{10}+\frac{27}{10})+sin2x(\frac{9}{10}-\frac{9}{10})

=3cos2x=3cos2x


Therefore the complete solution is

y=C.F.+P.Iy=C.F.+P.I

=Aex+Be−2x+3cos2x..............(1)=Ae^x+Be^{-2x}+3cos2x..............(1)

Again differentiate equation (1) ,we get

y′(x)=Aex−2Be−2x−6sin2x ....................(2)y'(x)=Ae^x-2Be^{-2x}-6sin2x \ ....................(2)

As given that ,

y(0)=2 and y′(0)=2y(0)=2 \ and \ y'(0)=2

So from equation (1) and (2) ,we get

A+B+3=2A+B+3=2

  ⟹  A+B=−1 ..............(3)\implies A+B=-1 \ ..............(3)

and A−2B=2....................(4)A-2B=2....................(4)

Subtracting (4) from (3) ,we get

A+B−(A−2B)=−1−2A+B-(A-2B)=-1-2

  ⟹  3B=−3 â€… ⟹  B=−1\implies 3B=-3 \ \implies B=-1

Again from (3) ,we get

A−1=−1 â€… ⟹  A=0A-1=-1 \ \implies A=0 .

Therefore equation (1) become

y=−e−2x+3cos2xy=-e^{-2x}+3cos2x .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS