The given differential equation is
dx2d2y+dxdy−2y=−6sin(2x)−18cos(2x)
The auxiliary equation is m2+m−2=0.
∴ m2+m−2=0
⟹m2+2m−m−2=0
⟹m(m+2)−1(m+2)=0
⟹(m+2)(m−1)=0
⟹m=1,−2 .
∴ C.F.=Aex+Be−2x
Where ,C.F.= Complementary Function.
Now ,
P.I.=D2+D−21(−6sin2x−18cos2x)
=D2+D−21(−6sin2x)+D2+D−21(−18cos2x)=−6×−22+D−21sin2x−18×−22+D−21cos2x=−6×D−61sin2x−18×D−61cos2x=−6×D2−36D+6sin2x−18×D2−36D+6cos2x
Multiplying numerator and denomination by D+6 .
=−6×−4−36D+6sin2x−18×−4−36D+6cos2x
=203×(D+6)sin2x+209×(D+6)cos2x
=203×(2cos2x+6sin2x)+209×(−2sin2x+6cos2x)
=cos2x(103+1027)+sin2x(109−109)
=3cos2x
Therefore the complete solution is
y=C.F.+P.I
=Aex+Be−2x+3cos2x..............(1)
Again differentiate equation (1) ,we get
y′(x)=Aex−2Be−2x−6sin2x ....................(2)
As given that ,
y(0)=2 and y′(0)=2
So from equation (1) and (2) ,we get
A+B+3=2
⟹A+B=−1 ..............(3)
and A−2B=2....................(4)
Subtracting (4) from (3) ,we get
A+B−(A−2B)=−1−2
⟹3B=−3 ⟹B=−1
Again from (3) ,we get
A−1=−1 ⟹A=0 .
Therefore equation (1) become
y=−e−2x+3cos2x .
Comments