Question #109001
Solve the differential equation x^(3)p^(2)+x^(2)yp+a^(3)=0 and also obtain its singular solution if
1
Expert's answer
2020-04-14T15:21:06-0400

To begin with, we clarify that by expression pp we mean the first derivative with respect to the variable xx :



p=dydxp=\frac{dy}{dx}

Now we rewrite the initial equation, expressing the variable yy as a function of xx and pp


x3p2+x2yp+a3=0x2yp=a3x3p2÷(x2p)y=a3x2px3p2x2py=a3x2pxpx^3p^2+x^2yp+a^3=0\longrightarrow\\[0.3cm] \left. x^2yp=-a^3-x^3p^2\right|\div\left(x^2p\right)\longrightarrow\\[0.3cm] y=-\frac{a^3}{x^2p}-\frac{x^3p^2}{x^2p}\longrightarrow\\[0.3cm]\boxed{y=-\frac{a^3}{x^2p}-xp}

We differentiate the resulting expression with respect to xx , remembering that p=dy/dxp=dy/dx in order to exclude the variable yy from the equation.



ddxy=a3x2pxpp=pxdpdxa3x3p(2)a3x2p2(dpdx)p+p2a3x3p=(xa3x2p2)dpdx2p(1a3x3p2)=x(1a3x3p2)dpdx2p=xdpdx\frac{d}{dx}\left|y=-\frac{a^3}{x^2p}-xp\right.\longrightarrow\\[0.3cm] p=-p-x\cdot\frac{dp}{dx}-\frac{a^3}{x^3p}\cdot(-2)-\frac{a^3}{x^2p^2}\cdot\left(-\frac{dp}{dx}\right)\\[0.3cm] p+p-\frac{2a^3}{x^3p}=-\left(x-\frac{a^3}{x^2p^2}\right)\cdot\frac{dp}{dx}\\[0.3cm] 2p\cdot\left(1-\frac{a^3}{x^3p^2}\right)=-x\cdot\left(1-\frac{a^3}{x^3p^2}\right)\cdot\frac{dp}{dx}\\[0.3cm] 2p=-x\cdot\displaystyle\frac{dp}{dx}




2p=xdpdxdpp=dx2xlnp=2lnx+lnClnp+lnx2=lnCpx2=Cp=Cx22p=-x\cdot\frac{dp}{dx}\longrightarrow\frac{dp}{p}=-\frac{dx}{2x}\longrightarrow\\[0.3cm] \ln|p|=-2\cdot\ln|x|+\ln|C|\longrightarrow\\[0.3cm] \ln|p|+\ln\left|x^2\right|=\ln|C|\longrightarrow px^2=C\\[0.3cm] \boxed{p=\frac{C}{x^2}}



Substitute the resulting ratio in the original equation



x3p2+x2yp+a3=0x3(Cx2)2+x2y(Cx2)+a3=0C2x+Cy+a3=0×(x)C2+(xy)C+a3x=0x^3p^2+x^2yp+a^3=0\longrightarrow\\[0.3cm] x^3\cdot\left(\frac{C}{x^2}\right)^2+x^2y\cdot\left(\frac{C}{x^2}\right)+a^3=0\longrightarrow\\[0.3cm] \left.\frac{C^2}{x}+Cy+a^3=0\right|\times(x)\\[0.3cm] \boxed{C^2+(xy)C+a^3x=0}

which is a quadratic equation in CC . Equating it's discriminant to 0, we get :



D=x2y24a3x=0x(xy24a3)=0[x=0xy24a3=0D=x^2y^2-4a^3x=0\longrightarrow\\[0.3cm] x\cdot\left(xy^2-4a^3\right)=0\longrightarrow \left[\begin{array}{l} x=0\\[0.3cm] xy^2-4a^3=0 \end{array}\right.



ANSWER



[x=0xy24a3=0\left[\begin{array}{l} x=0\\[0.3cm] xy^2-4a^3=0 \end{array}\right.

are the singular solutions of the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS