Answer to Question #109553 in Differential Equations for David

Question #109553
. Find the general solution of the partial differential equation

6uxx −5uxy −6uyy =52e3x+2y
1
Expert's answer
2020-04-15T09:43:24-0400

The given equation can be written as

(6D25DD6D2)u=52e3x+2y(6D^{2}-5DD'-6D'^{2})u=52e^{3x+2y}, where Dx,Dy.D \equiv \dfrac{\partial}{\partial x}, D' \equiv \dfrac{\partial}{\partial y} .


The auxiliary equation is

6m25m6=06m^{2}-5m-6=0 , solving we get

m=23,32m = -\dfrac{2}{3}, \dfrac{3}{2}

C.F=f1(y2x3)+f2(y+3x2)C.F=f_{1}(y-\frac{2x}{3})+f_{2}(y+\frac{3x}{2})

P.I=16D25DD6D252e3x+2y                              (Replace D by 3 and D by 2)=163253262252e3x+2y=1052e3x+2y  (Rule fails)                          (Differentiating denominator with respect to D                            and multiplying the numerator by x)=x112D5D52e3x+2y                          (Replace D by 3 and D by 2)=x1361052e3x+2yP.I=2xe3x+2yP.I = \dfrac{1}{6D^2-5DD'-6D'^{2}} 52e^{3x+2y}\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\text{(Replace $D$ by 3 and $D'$ by 2)}\\ = \dfrac{1}{6 \cdot 3^2-5\cdot 3\cdot 2-6\cdot2^{2}} 52e^{3x+2y}\\ = \dfrac{1}{0}52e^{3x+2y}~~\text{(Rule fails)}\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~\text{(Differentiating denominator with respect to $D$} \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~\text{and multiplying the numerator by $x$)}\\ =x \dfrac{1}{12 D-5D'} 52e^{3x+2y}\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~\text{(Replace $D$ by 3 and $D'$ by 2)}\\ =x\dfrac{1}{36-10}52e^{3x+2y}\\ P.I=2xe^{3x+2y}


The general solution is

u(x,y)=C.F+P.I=f1(y2x3)+f2(y+3x2)+2xe3x+2yu(x,y) = C.F+P.I = f_{1}(y-\frac{2x}{3})+f_{2}(y+\frac{3x}{2})+2xe^{3x+2y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment