Problem:
( x 2 + 1 ) × ∂ 2 y ∂ x 2 + x × ∂ y ∂ x − y = 0 (x^2+1)\times \dfrac{\partial^2 y}{\partial x^2}+x\times \dfrac{\partial y}{\partial x}-y=0 ( x 2 + 1 ) × ∂ x 2 ∂ 2 y + x × ∂ x ∂ y − y = 0 (1)
Let's image solution of the task in the next view:
y = x σ ( a 0 + a 1 x + a 2 x 2 + . . . a k x k + . . . ) y=x^\sigma(a_{0}+a_{1}x+a_{2}x^2+...a_{k}x^k+...) y = x σ ( a 0 + a 1 x + a 2 x 2 + ... a k x k + ... ) (2)
Now subsitute equation (2) into equation (1):
( x 2 + 1 ) × ( σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x σ − 1 + ( σ + 2 ) × ( σ + 1 ) × a 2 x σ + . . . ) + x × ( σ × a 0 x σ − 1 + ( σ + 1 ) × a 1 x σ + ( σ + 2 ) × a 2 x σ + 1 + . . . ) − ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + . . . ) = 0 (x^2+1)\times(\sigma\times(\sigma-1)\times a_{0}x^{\sigma-2}+(\sigma+1)\times\sigma\times a_{1}x^{\sigma-1}+(\sigma+2)\times(\sigma+1)\times a_{2}x^{\sigma}+...)+x\times(\sigma\times a_{0}x^{\sigma-1}+(\sigma+1)\times a_{1}x^{\sigma}+(\sigma+2)\times a_{2}x^{\sigma+1}+...)-(a_{0}x^{\sigma}+a_{1}x^{\sigma+1}+a_{2}x^{\sigma+2}+...)=0 ( x 2 + 1 ) × ( σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x σ − 1 + ( σ + 2 ) × ( σ + 1 ) × a 2 x σ + ... ) + x × ( σ × a 0 x σ − 1 + ( σ + 1 ) × a 1 x σ + ( σ + 2 ) × a 2 x σ + 1 + ... ) − ( a 0 x σ + a 1 x σ + 1 + a 2 x σ + 2 + ... ) = 0
Or:
σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x σ − 1 + ( σ × ( σ − 1 ) × a 0 + ( σ + 2 ) × ( σ + 1 ) × a 2 + σ × a 0 − a 0 ) x σ + . . . = 0 \sigma\times(\sigma-1)\times a_{0}x^{\sigma-2}
+ (\sigma+1)\times\sigma\times a_{1}x^{\sigma-1} +
(\sigma\times(\sigma-1)\times a_{0}+(\sigma+2)\times(\sigma+1)\times a_{2}+\sigma\times a_{0}-a_{0})x^{\sigma}+...=0 σ × ( σ − 1 ) × a 0 x σ − 2 + ( σ + 1 ) × σ × a 1 x σ − 1 + ( σ × ( σ − 1 ) × a 0 + ( σ + 2 ) × ( σ + 1 ) × a 2 + σ × a 0 − a 0 ) x σ + ... = 0
Now equate all coefficient near x σ − 2 x^{\sigma-2} x σ − 2 , x σ − 1 x^{\sigma-1} x σ − 1 , x σ x^{\sigma} x σ ,... to zero:
{ a 0 × ( σ − 1 ) × σ = 0 a 1 × ( σ + 1 ) × σ = 0 a 0 × ( σ + 1 ) × ( σ − 1 ) − a 2 × ( σ + 2 ) × ( σ + 1 ) = 0 a 1 × σ × ( σ + 2 ) − a 3 × ( σ + 3 ) × ( σ + 2 ) = 0 . . . . a k × ( σ − k + 1 ) × ( σ + k + 1 ) − a k + 2 × ( σ + k + 2 ) × ( σ + k + 1 ) = 0 \begin{cases}
a_{0}\times(\sigma-1)\times\sigma=0 \\
a_{1}\times(\sigma+1)\times\sigma=0 \\
a_{0}\times(\sigma+1)\times(\sigma-1)-a_{2}\times(\sigma+2)\times(\sigma+1)=0 \\
a_{1}\times\sigma\times(\sigma+2)-a_{3}\times(\sigma+3)\times(\sigma+2)=0\\
.... \\
a_{k}\times(\sigma-k+1)\times(\sigma+k+1)-a_{k+2}\times(\sigma+k+2)\times(\sigma+k+1)=0\\
\end{cases} ⎩ ⎨ ⎧ a 0 × ( σ − 1 ) × σ = 0 a 1 × ( σ + 1 ) × σ = 0 a 0 × ( σ + 1 ) × ( σ − 1 ) − a 2 × ( σ + 2 ) × ( σ + 1 ) = 0 a 1 × σ × ( σ + 2 ) − a 3 × ( σ + 3 ) × ( σ + 2 ) = 0 .... a k × ( σ − k + 1 ) × ( σ + k + 1 ) − a k + 2 × ( σ + k + 2 ) × ( σ + k + 1 ) = 0 (3)
From the first equation (using that a 0 ≠ 0 a_{0}\not=0 a 0 = 0 ) we get:
σ = 0 \sigma=0 σ = 0 or σ = 1 \sigma=1 σ = 1
Case: σ = 1 \sigma=1 σ = 1
Our system (3) will have the next view:
{ 0 = 0 a 1 × 2 = 0 a 0 × 0 − a 2 × 3 = 0 a 1 × 3 − a 3 × 12 = 0 . . . \begin{cases}
0=0\\
a_{1}\times 2=0\\
a_{0}\times 0-a_{2}\times 3=0\\
a_{1}\times 3-a_{3}\times12=0\\
...
\end{cases} ⎩ ⎨ ⎧ 0 = 0 a 1 × 2 = 0 a 0 × 0 − a 2 × 3 = 0 a 1 × 3 − a 3 × 12 = 0 ...
Or:
{ 0 = 0 a 1 = 0 a 2 = 0 a 3 = 0 . . . \begin{cases}
0=0\\
a_{1}=0\\
a_{2}=0\\
a_{3}=0\\
...\\
\end{cases} ⎩ ⎨ ⎧ 0 = 0 a 1 = 0 a 2 = 0 a 3 = 0 ...
So we have that all coefficient a k a_{k} a k (except a 0 a_{0} a 0 ) are equal zero. So solution of this problem in this case is:
y = a 0 × x σ y=a_{0}\times x^{\sigma} y = a 0 × x σ ,
But for this case σ = 1 \sigma=1 σ = 1 , so
y = a 0 × x y=a_{0}\times x y = a 0 × x , where a 0 a_{0} a 0 is a different constant.
Case: σ = 0 \sigma=0 σ = 0
Our system (3) will have the next view:
{ 0 = 0 0 = 0 − a 0 − 2 × a 2 = 0 a 1 × 0 − a 3 × 6 = 0 . . . \begin{cases}
0=0\\
0=0\\
-a_{0}-2\times a_{2}=0\\
a_{1}\times 0 - a_{3}\times 6=0\\
...
\end{cases} ⎩ ⎨ ⎧ 0 = 0 0 = 0 − a 0 − 2 × a 2 = 0 a 1 × 0 − a 3 × 6 = 0 ...
Or:
{ a 2 = − a 0 2 a 3 = 0 . . . \begin{cases}
a_{2}=-\dfrac{a_{0}}{2}\\
a_{3}=0\\
...
\end{cases} ⎩ ⎨ ⎧ a 2 = − 2 a 0 a 3 = 0 ...
So we have that coefficient a 3 a_{3} a 3 , a 5 a_{5} a 5 , ... are equals to zero, and the pairs coefficient(and a 1 a_{1} a 1 ) aren't equal to zero. For convenience let's get: a 1 = 0 a_{1}=0 a 1 = 0 .
For this case, the genral solution will have the next view:
y = a 0 + a 2 x 2 + a 4 x 4 + . . . = ∑ k = 0 a 2 k x 2 k y=a_{0}+a_{2} x^2+ a_{4}x^4+...=
\begin{matrix}
\\
\sum \\
_{k=0}
\end{matrix}
a_{2k}x^{2k} y = a 0 + a 2 x 2 + a 4 x 4 + ... = ∑ k = 0 a 2 k x 2 k
Comments