Question #111247
(x^2+1) y"+xy'-y=0 solve by power series
1
Expert's answer
2020-04-22T18:55:47-0400

Problem:

(x2+1)×2yx2+x×yxy=0(x^2+1)\times \dfrac{\partial^2 y}{\partial x^2}+x\times \dfrac{\partial y}{\partial x}-y=0 (1)

Let's image solution of the task in the next view:

y=xσ(a0+a1x+a2x2+...akxk+...)y=x^\sigma(a_{0}+a_{1}x+a_{2}x^2+...a_{k}x^k+...) (2)

Now subsitute equation (2) into equation (1):

(x2+1)×(σ×(σ1)×a0xσ2+(σ+1)×σ×a1xσ1+(σ+2)×(σ+1)×a2xσ+...)+x×(σ×a0xσ1+(σ+1)×a1xσ+(σ+2)×a2xσ+1+...)(a0xσ+a1xσ+1+a2xσ+2+...)=0(x^2+1)\times(\sigma\times(\sigma-1)\times a_{0}x^{\sigma-2}+(\sigma+1)\times\sigma\times a_{1}x^{\sigma-1}+(\sigma+2)\times(\sigma+1)\times a_{2}x^{\sigma}+...)+x\times(\sigma\times a_{0}x^{\sigma-1}+(\sigma+1)\times a_{1}x^{\sigma}+(\sigma+2)\times a_{2}x^{\sigma+1}+...)-(a_{0}x^{\sigma}+a_{1}x^{\sigma+1}+a_{2}x^{\sigma+2}+...)=0

Or:

σ×(σ1)×a0xσ2+(σ+1)×σ×a1xσ1+(σ×(σ1)×a0+(σ+2)×(σ+1)×a2+σ×a0a0)xσ+...=0\sigma\times(\sigma-1)\times a_{0}x^{\sigma-2} + (\sigma+1)\times\sigma\times a_{1}x^{\sigma-1} + (\sigma\times(\sigma-1)\times a_{0}+(\sigma+2)\times(\sigma+1)\times a_{2}+\sigma\times a_{0}-a_{0})x^{\sigma}+...=0

Now equate all coefficient near xσ2x^{\sigma-2} , xσ1x^{\sigma-1}, xσx^{\sigma},... to zero:

{a0×(σ1)×σ=0a1×(σ+1)×σ=0a0×(σ+1)×(σ1)a2×(σ+2)×(σ+1)=0a1×σ×(σ+2)a3×(σ+3)×(σ+2)=0....ak×(σk+1)×(σ+k+1)ak+2×(σ+k+2)×(σ+k+1)=0\begin{cases} a_{0}\times(\sigma-1)\times\sigma=0 \\ a_{1}\times(\sigma+1)\times\sigma=0 \\ a_{0}\times(\sigma+1)\times(\sigma-1)-a_{2}\times(\sigma+2)\times(\sigma+1)=0 \\ a_{1}\times\sigma\times(\sigma+2)-a_{3}\times(\sigma+3)\times(\sigma+2)=0\\ .... \\ a_{k}\times(\sigma-k+1)\times(\sigma+k+1)-a_{k+2}\times(\sigma+k+2)\times(\sigma+k+1)=0\\ \end{cases} (3)

From the first equation (using that a00a_{0}\not=0) we get:

σ=0\sigma=0 or σ=1\sigma=1

Case: σ=1\sigma=1

Our system (3) will have the next view:

{0=0a1×2=0a0×0a2×3=0a1×3a3×12=0...\begin{cases} 0=0\\ a_{1}\times 2=0\\ a_{0}\times 0-a_{2}\times 3=0\\ a_{1}\times 3-a_{3}\times12=0\\ ... \end{cases}

Or:

{0=0a1=0a2=0a3=0...\begin{cases} 0=0\\ a_{1}=0\\ a_{2}=0\\ a_{3}=0\\ ...\\ \end{cases}

So we have that all coefficient aka_{k} (except a0a_{0}) are equal zero. So solution of this problem in this case is:

y=a0×xσy=a_{0}\times x^{\sigma},

But for this case σ=1\sigma=1, so

y=a0×xy=a_{0}\times x, where a0a_{0} is a different constant.

Case: σ=0\sigma=0

Our system (3) will have the next view:

{0=00=0a02×a2=0a1×0a3×6=0...\begin{cases} 0=0\\ 0=0\\ -a_{0}-2\times a_{2}=0\\ a_{1}\times 0 - a_{3}\times 6=0\\ ... \end{cases}

Or:

{a2=a02a3=0...\begin{cases} a_{2}=-\dfrac{a_{0}}{2}\\ a_{3}=0\\ ... \end{cases}

So we have that coefficient a3a_{3}, a5a_{5}, ... are equals to zero, and the pairs coefficient(and a1a_{1}) aren't equal to zero. For convenience let's get: a1=0a_{1}=0.

For this case, the genral solution will have the next view:

y=a0+a2x2+a4x4+...=k=0a2kx2ky=a_{0}+a_{2} x^2+ a_{4}x^4+...= \begin{matrix} \\ \sum \\ _{k=0} \end{matrix} a_{2k}x^{2k}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS