Given
(x2+1)y′′+xy′−xy=0
Let
yy′y′′=n=0∑∞anxn=n=1∑∞nanxn−1=n=2∑∞n(n−1)anxn−2
Then
(x2+1)n=2∑∞n(n−1)anxn−2+xn=1∑∞nanxn−1−xn=0∑∞anxnn=2∑∞n(n−1)anxn+n=2∑∞n(n−1)anxn−2+n=1∑∞nanxn−n=0∑∞anxn+1k=2∑∞k(k−1)akxk+k=4∑∞(k−2)(k−3)ak−2xk+k=1∑∞kakxk−k=1∑∞ak−1xk2a2x2+6a3x3+k=4∑∞k(k−1)akxk+k=4∑∞(k−2)(k−3)ak−2xk+a1x+2a2x2+3a3x3+k=4∑∞kakxk−a0x−a1x2−a2x3−k=4∑∞ak−1xk(a1−a0)x+(4a2−a1)x2+(9a3−a2)x3+k=4∑∞[k(k−1)ak+(k−2)(k−3)ak−2+kak−ak−1]xk=0=0=0=0=0
Then we get
a1−a04a2−a19a3−a2k2akak=0 →a1=a0=0 →a2=41a0=0 →a3=361a0=(k−2)(k−3)ak−2−ak−1=k2(k−2)(k−3)ak−2−ak−1, k≥4
Hence
a4a5⋮=162a2−a3=57617a0=162a2−a3=1440079a0
Then we can write the solution as
y=n=0∑∞anxn=a0+a1x+a2x2+a3x3+a4x4+⋯=a0+a0x+41a0x2+361a0x3+57617a0x4+1440079a0x5+⋯
Comments