Question #111118
A curve is such that dy∕dx=√ (2x+5) and (2,5) is a point on the curve. What is the equation of the curve?
1
Expert's answer
2020-04-21T15:55:36-0400

Given

dydx=(2x+5)\frac{d y }{d x}=\sqrt{( 2 x+5)}

Separate variables

dy=2x+5dxy=2x+5dx=1222x+5dx=1223(2x+5)3/2+c=13(2x+5)3/2+c\begin{aligned} dy&= \sqrt{2x+5}dx\\ y&=\int \sqrt{2x+5}dx\\ &=\frac{1}{2}\int 2\sqrt{2x+5}dx\\ &=\frac{1}{2}\frac{2}{3} (2x+5)^{3/2}+c\\ &= \frac{1}{3}(2x+5)^{3/2}+c \end{aligned}

Since the curve passes through (2,5) , then

5=13(4+5)3/2+c5=9+cc=4\begin{aligned} 5&= \frac{1}{3}(4+5)^{3/2}+c\\ 5&= 9+c\\ c&=-4 \end{aligned}

Hence

y=13(2x+5)3/24y= \frac{1}{3}(2x+5)^{3/2}-4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS