Given
dydx=(2x+5)\frac{d y }{d x}=\sqrt{( 2 x+5)}dxdy=(2x+5)
Separate variables
dy=2x+5dxy=∫2x+5dx=12∫22x+5dx=1223(2x+5)3/2+c=13(2x+5)3/2+c\begin{aligned} dy&= \sqrt{2x+5}dx\\ y&=\int \sqrt{2x+5}dx\\ &=\frac{1}{2}\int 2\sqrt{2x+5}dx\\ &=\frac{1}{2}\frac{2}{3} (2x+5)^{3/2}+c\\ &= \frac{1}{3}(2x+5)^{3/2}+c \end{aligned}dyy=2x+5dx=∫2x+5dx=21∫22x+5dx=2132(2x+5)3/2+c=31(2x+5)3/2+c
Since the curve passes through (2,5) , then
5=13(4+5)3/2+c5=9+cc=−4\begin{aligned} 5&= \frac{1}{3}(4+5)^{3/2}+c\\ 5&= 9+c\\ c&=-4 \end{aligned}55c=31(4+5)3/2+c=9+c=−4
Hence
y=13(2x+5)3/2−4y= \frac{1}{3}(2x+5)^{3/2}-4y=31(2x+5)3/2−4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments