Question #110474
(y+xz)p-(x+yz)q=x²-y²
1
Expert's answer
2020-04-20T11:58:35-0400


Given, (y+xz)p(x+yz)q=x2y2(y+xz)p-(x+yz)q = x^{2}-y^{2}.

This equation is of the form Pp+Qq=RPp+Qq=R (Lagrange's linear partial differential equation).

Here, P=y+xz,Q=(x+yz),R=x2y2P = y+xz, Q=-(x+yz), R = x^{2}-y^{2}.


The subsidiary equations are

dxP=dyQ=dzRdxy+xz=dy(x+yz)=dzx2y2           (1)\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R}\\ \dfrac{dx}{y+xz}=\dfrac{dy}{-(x+yz)}=\dfrac{dz}{x^{2}-y^{2}}~~~~~~~~~~~-(1).

Each ratio of (1) is equal to xdx+ydy(x2y2)z=dx+dy(1z)(yx)\dfrac{xdx+ydy}{(x^{2}-y^{2})z} = \dfrac{dx+dy}{(1-z)(y-x)}.

Let us consider,

xdx+ydy(x2y2)z=dzx2y2xdx+ydy=zdzIntegrating, xdx+ydy=zdzx22+y22=z22+c12x2+y2z2=c1\dfrac{xdx+ydy}{(x^{2}-y^{2})z} = \dfrac{dz}{x^{2}-y^{2}}\\ xdx+ydy=zdz\\ \text{Integrating, }\\ \int xdx + \int ydy = \int zdz\\ \dfrac{x^{2}}{2}+\dfrac{y^{2}}{2} =\dfrac{z^{2}}{2}+\dfrac{c_{1}}{2}\\ x^{2}+y^{2}-z^{2}=c_{1}


Consider,

dx+dy(1z)(yx)=dz(x+y)(xy)dx+dy1z=dz(x+y)(x+y)d(x+y)=(1z)dzIntegrating,(x+y)d(x+y)=(1+z)dz(x+y)22=(1z)22+c22(1z)2(x+y)2=c2\dfrac{dx+dy}{(1-z)(y-x)}=\dfrac{dz}{(x+y)(x-y)}\\ \dfrac{dx+dy}{1-z}=\dfrac{dz}{-(x+y)}\\ -(x+y)d(x+y)=(1-z)dz\\ \text{Integrating,}\\ -\int (x+y)d(x+y)=\int (1+z)dz\\ -\dfrac{(x+y)^2}{2}=\dfrac{(1-z)^{2}}{-2}+\dfrac{c_{2}}{2}\\ (1-z)^{2}-(x+y)^{2}=c_{2}


The general solution is,

ϕ(c1,c2)=0ϕ(x2+y2z2,(1z)2(x+y)2)=0.\phi(c_{1},c_{2})=0\\ \phi\left(x^{2}+y^{2}-z^{2}, (1-z)^{2}-(x+y)^{2}\right)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Ishaan Jaiswal
18.10.21, 12:44

Amazing job sir

LATEST TUTORIALS
APPROVED BY CLIENTS