Given, (y+xz)p−(x+yz)q=x2−y2.
This equation is of the form Pp+Qq=R (Lagrange's linear partial differential equation).
Here, P=y+xz,Q=−(x+yz),R=x2−y2.
The subsidiary equations are
Pdx=Qdy=Rdzy+xzdx=−(x+yz)dy=x2−y2dz −(1).
Each ratio of (1) is equal to (x2−y2)zxdx+ydy=(1−z)(y−x)dx+dy.
Let us consider,
(x2−y2)zxdx+ydy=x2−y2dzxdx+ydy=zdzIntegrating, ∫xdx+∫ydy=∫zdz2x2+2y2=2z2+2c1x2+y2−z2=c1
Consider,
(1−z)(y−x)dx+dy=(x+y)(x−y)dz1−zdx+dy=−(x+y)dz−(x+y)d(x+y)=(1−z)dzIntegrating,−∫(x+y)d(x+y)=∫(1+z)dz−2(x+y)2=−2(1−z)2+2c2(1−z)2−(x+y)2=c2
The general solution is,
ϕ(c1,c2)=0ϕ(x2+y2−z2,(1−z)2−(x+y)2)=0.
Comments
Amazing job sir