yIV−2yIII+2yII=(3+2x)e−x+e−xsinx
Solution find in form
y=y0+y1+y2
1) y0 find from equation
yIV−2yIII+2yII=0λ4−2λ3+2λ2=0λ1=λ2=0,λ3=1−i,λ4=1+iy0=C1+C2x+C3excosx+C4exsinx
2) y1 find in form
y1=(ax+b)e−x
for equation
yIV−2yIII+2yII=(3+2x)e−xy1′=(a−ax−b)e−xy1′′=(ax−2a+b)e−xy1′′′=(3a−ax−b)e−xy1′′′′=(ax−4a+b)e−x
input in equation
(ax−4a+b)e−x−2(3a−ax−b)e−x++2(ax−2a+b)e−x=(3+2x)e−xx:a+2a+2a=2x0:b−4a−6a+2b−4a+2b=3a=52b=2543y1=(52x+2543)e−x
3) y2 find in form
y2=ke−xcosx+me−xsinx
for equation
yIV−2y′′′+2y′′=e−xsinxy2′=(m−k)e−xcosx−(k+m)e−xsinxy2′′=−2me−xcosx+2ke−xsinxy2′′′=(2m+2k)e−xcosx+(2m−2k)e−xsinxy2′′′′=−4ke−xcosx−4me−xsinx−4ke−xcosx−4me−xsinx−−2(2m+2k)e−xcosx−2(2m−2k)e−xsinx−−4me−xcosx+4ke−xsinx=e−xsinxcosx:−4k−4m−4k−4m=0sinx:−4m−4m+4k+4k=1m=−161k=161y2=161e−xcosx−161e−xsinx
than
y=C1+C2x+C3excosx+C4exsinx++(52x+2543)e−x+161e−xcosx−161e−xsinx
Comments
Dear Anurag Dhayal, please use the panel for submitting new questions.
y"-y'=e^x+e^2x+x find the general solution