Question #110616
Using the method of undetermined coefficients, find the general solution of the differential equation,
y'''' - 2y''' + 2y'' = 3e^(-x) + 2e^(-x)x + e^(-x)sinx.
1
Expert's answer
2020-04-29T18:04:44-0400

yIV2yIII+2yII=(3+2x)ex+exsinxy^{IV}-2y^{III}+2y^{II}=(3+2x)e^{-x}+e^{-x} \sin x

Solution find in form

y=y0+y1+y2y=y_0+y_1+y_2

1) y0y_0 find from equation

yIV2yIII+2yII=0λ42λ3+2λ2=0λ1=λ2=0,λ3=1i,λ4=1+iy0=C1+C2x+C3excosx+C4exsinxy^{IV}-2y^{III}+2y^{II}=0\\ \lambda ^4-2\lambda^3+2\lambda^2=0\\ \lambda_1=\lambda_2=0, \lambda_3=1-i, \lambda_4=1+i\\ y_0=C_1+C_2x+C_3e^x\cos x+C_4e^x \sin x


2) y1y_1 find in form

y1=(ax+b)exy_1=(ax+b)e^{-x}

for equation

yIV2yIII+2yII=(3+2x)exy1=(aaxb)exy1=(ax2a+b)exy1=(3aaxb)exy1=(ax4a+b)exy^{IV}-2y^{III}+2y^{II}=(3+2x)e^{-x}\\ y_1'=(a-ax-b)e^{-x}\\ y_1''=(ax-2a+b)e^{-x}\\ y_1'''=(3a-ax-b)e^{-x}\\ y_1''''=(ax-4a+b)e^{-x}\\

input in equation

(ax4a+b)ex2(3aaxb)ex++2(ax2a+b)ex=(3+2x)exx:a+2a+2a=2x0:b4a6a+2b4a+2b=3a=25b=4325y1=(25x+4325)ex(ax-4a+b)e^{-x}-2(3a-ax-b)e^{-x}+\\ +2(ax-2a+b)e^{-x}=(3+2x)e^{-x}\\ x:a+2a+2a=2\\ x^0:b-4a-6a+2b-4a+2b=3\\ a=\frac{2}{5}\\ b=\frac{43}{25}\\ y_1=(\frac{2}{5}x+\frac{43}{25})e^{-x}


3) y2y_2 find in form

y2=kexcosx+mexsinxy_2=ke^{-x}\cos x+me^{-x}\sin x

for equation

yIV2y+2y=exsinxy2=(mk)excosx(k+m)exsinxy2=2mexcosx+2kexsinxy2=(2m+2k)excosx+(2m2k)exsinxy2=4kexcosx4mexsinx4kexcosx4mexsinx2(2m+2k)excosx2(2m2k)exsinx4mexcosx+4kexsinx=exsinxcosx:4k4m4k4m=0sinx:4m4m+4k+4k=1m=116k=116y2=116excosx116exsinxy^{IV}-2y'''+2y''=e^{-x}\sin x\\ y'_2=(m-k)e^{-x}\cos x-(k+m)e^{-x}\sin x\\ y''_2=-2me^{-x}\cos x+2ke^{-x}\sin x\\ y'''_2=(2m+2k)e^{-x}\cos x+(2m-2k)e^{-x}\sin x\\ y''''_2=-4ke^{-x}\cos x-4me^{-x}\sin x\\ -4ke^{-x}\cos x-4me^{-x}\sin x-\\ -2(2m+2k)e^{-x}\cos x-2(2m-2k)e^{-x}\sin x-\\ -4me^{-x}\cos x+4ke^{-x}\sin x=e^{-x}\sin x\\ \cos x: -4k-4m-4k-4m=0\\ \sin x:-4m-4m+4k+4k=1\\ m=-\frac{1}{16}\\ k=\frac{1}{16}\\ y_2=\frac{1}{16}e^{-x}\cos x-\frac{1}{16}e^{-x}\sin x

than

y=C1+C2x+C3excosx+C4exsinx++(25x+4325)ex+116excosx116exsinxy=C_1+C_2x+C_3e^x\cos x+C_4e^x\sin x+\\ +(\frac{2}{5}x+\frac{43}{25})e^{-x}+\frac{1}{16}e^{-x}\cos x-\frac{1}{16}e^{-x}\sin x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
26.10.20, 18:12

Dear Anurag Dhayal, please use the panel for submitting new questions.

Anurag Dhayal
25.10.20, 18:34

y"-y'=e^x+e^2x+x find the general solution

LATEST TUTORIALS
APPROVED BY CLIENTS