Given that z = a x + a 2 − 4 y + c z=ax+\sqrt{a^2-4y}+c z = a x + a 2 − 4 y + c is the complete integral of the PDE, p 2 − q 2 = 4 p^2-q^2=4 p 2 − q 2 = 4
To find the general solution we put c = f ( a ) , c=f(a), c = f ( a ) , where f f f is an arbitrary function
z = a x + a 2 − 4 y + f ( a ) ( 1 ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ z=ax+\sqrt{a^2-4y}+f(a) \ \ \ \ \ \ \ \ \ \ \ \ \ (1) z = a x + a 2 − 4 y + f ( a ) ( 1 ) Differentiate ( 1 ) (1) ( 1 ) partially with respect to a a a
x + 2 a 2 a 2 − 4 y + f ′ ( a ) = 0 x+{2a \over 2\sqrt{a^2-4y}}+f'(a)=0 x + 2 a 2 − 4 y 2 a + f ′ ( a ) = 0
a a 2 − 4 y = − ( x + f ′ ( a ) ) {a \over \sqrt{a^2-4y}}=-(x+f'(a)) a 2 − 4 y a = − ( x + f ′ ( a ))
a 2 = a 2 ( x + f ′ ( a ) ) 2 − 4 y ( x + f ′ ( a ) ) 2 a^2=a^2(x+f'(a))^2-4y(x+f'(a))^2 a 2 = a 2 ( x + f ′ ( a ) ) 2 − 4 y ( x + f ′ ( a ) ) 2
a = ± 2 ( x + f ′ ( a ) ) 2 y ( x + f ′ ( a ) ) 2 − 1 a=\pm2\sqrt{{(x+f'(a))^2y \over (x+f'(a))^2-1}} a = ± 2 ( x + f ′ ( a ) ) 2 − 1 ( x + f ′ ( a ) ) 2 y
z = a x − a x + f ′ ( a ) + f ( a ) z=ax-{a \over x+f'(a)}+f(a) z = a x − x + f ′ ( a ) a + f ( a )
The general solution is
z = ± 2 ( x + f ′ ( a ) ) 2 y ( x + f ′ ( a ) ) 2 − 1 x ∓ sgn ( x + f ′ ( a ) ) 2 y ( x + f ′ ( a ) ) 2 − 1 + f ( a ) z=\pm2\sqrt{{(x+f'(a))^2y \over (x+f'(a))^2-1}}x\mp\text{sgn}(x+f'(a))2\sqrt{{y \over (x+f'(a))^2-1}}+f(a) z = ± 2 ( x + f ′ ( a ) ) 2 − 1 ( x + f ′ ( a ) ) 2 y x ∓ sgn ( x + f ′ ( a )) 2 ( x + f ′ ( a ) ) 2 − 1 y + f ( a )
Comments