Question #105581
Find f(y) so that equation f(y)dx − zx dy − xy ln y dz = 0 is integrable. Also obtain the corresponding integral using Natani’s method.
1
Expert's answer
2020-03-16T13:56:13-0400

Equation f(y)dxzxdyxylnydz=0f(y)dx-zxdy-xylnydz=0 is integrable, if 

XrotX=0X=(f(y),zx,xylny)X\cdot rotX=0\\ X=(f(y),-zx,-xylny)

Calculate rotXrotX :

rotX=×X=ijkxyzf(y)zxxylny==i(y(xylny)z(xz))j(x(xylny)z(f(y)))++k(x(zx)y(f(y)))==(xlny)i+(ylny)j+(zf(y))krotX=\nabla\times X=\begin{vmatrix} \vec{i} & \vec{j}&\vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ f(y)&-zx&-xylny \end{vmatrix}=\\ =\vec{i}( \frac{\partial}{\partial y}(-xylny)- \frac{\partial}{\partial z}(-xz))-\\ -\vec{j}( \frac{\partial}{\partial x}(-xylny)- \frac{\partial}{\partial z}(f(y)))+\\ +\vec{k}( \frac{\partial}{\partial x}(-zx)- \frac{\partial}{\partial y}(f(y)))=\\ =(-xlny)\vec{i}+(ylny)\vec{j}+(-z-f'(y))\vec{k}

Then

XrotX=xlnyf(y)+xylnyf(y)=0X\cdot rotX=-xlny\cdot f(y)+xylnyf'(y)=0

Thus xlny(yf(y)f(y))=0xlny\cdot(yf'(y)-f(y))=0 , hence yf(y)f(y)=0yf'(y)-f(y)=0

The solution of the last equation is determined by

dff=dyylnf(y)=lny+lnAf(y)=Ay\frac{df}{f}=\frac{dy}{y}\\ ln|f(y)|=ln|y|+ln|A|\\ f(y)=A\cdot y

where AA is a real constant. Finally, equation takes the form 

Aydxzxdyxylnydz=0Aydx-zxdy-xylnydz=0

Using Natani’s method we firstly put z=constz=const and solve the obtained equation

Aydx=zxdyadxx=zdyyAlnx=zlny+F(z)Aydx=zxdy\\ a\frac{dx}{x}=z\frac{dy}{y}\\ Alnx=zlny+F(z)

Now we let x=1x=1 . Then equation takes the form 

zdyylnydz=0-zdy-ylnydz=0

and

F(z)=zlnyF(z)=-zlny

Thus

zdy+ylnydz=0dyylny+dzz=0lnlny=lnz+lnClny=Czzdy+ylnydz=0\\ \frac{dy}{ylny}+\frac{dz}{z}=0\\ ln|lny|=-ln|z|+ln|C|\\ lny=\frac{C}{z}

Therefore, 

F(z)=zlny=zCz=C=K=constF(z)=-zlny=-z\cdot\frac{C}{z}=-C=K=const

Finally,

Alnx=zlny+KAlnx=zlny+K

where KK is an arbitrary real constant.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS