Equation f(y)dx−zxdy−xylnydz=0 is integrable, if
X⋅rotX=0X=(f(y),−zx,−xylny)
Calculate rotX :
rotX=∇×X=∣∣i∂x∂f(y)j∂y∂−zxk∂z∂−xylny∣∣==i(∂y∂(−xylny)−∂z∂(−xz))−−j(∂x∂(−xylny)−∂z∂(f(y)))++k(∂x∂(−zx)−∂y∂(f(y)))==(−xlny)i+(ylny)j+(−z−f′(y))k
Then
X⋅rotX=−xlny⋅f(y)+xylnyf′(y)=0
Thus xlny⋅(yf′(y)−f(y))=0 , hence yf′(y)−f(y)=0
The solution of the last equation is determined by
fdf=ydyln∣f(y)∣=ln∣y∣+ln∣A∣f(y)=A⋅y
where A is a real constant. Finally, equation takes the form
Aydx−zxdy−xylnydz=0
Using Natani’s method we firstly put z=const and solve the obtained equation
Aydx=zxdyaxdx=zydyAlnx=zlny+F(z)
Now we let x=1 . Then equation takes the form
−zdy−ylnydz=0
and
F(z)=−zlny
Thus
zdy+ylnydz=0ylnydy+zdz=0ln∣lny∣=−ln∣z∣+ln∣C∣lny=zC
Therefore,
F(z)=−zlny=−z⋅zC=−C=K=const
Finally,
Alnx=zlny+K
where K is an arbitrary real constant.
Comments