x2+y2dx=2xydy=z(x+y)dz
1) x2+y2+2xydx+dy=z(x+y)dz
(x+y)2dx+dy=z(x+y)dz,x+ydx+dy=zdz,d(ln∣x+y∣)=d(ln∣z∣)
ln∣x+y∣=ln∣z∣+C
∣x+y∣=eC∣z∣
x+y=C^z
2) x2+y2−2xydx−dy=z(x+y)dz
(x−y)2dx−dy=C^z2dz,d(x−y−1)=d(C^z−1)
x−y−1=C^z−1+C’=x+y−1+C’
x+y1−x−y1=x2−y2−2y=C’
Answer: x+y=C1z,x2−y2−2y=C2
Comments