Question #105578
Find the integral curves of the equation:
dx/(x²+y²) = dy/2xy = dz/{z(x+y)}
1
Expert's answer
2020-03-16T13:25:10-0400

dxx2+y2=dy2xy=dzz(x+y)\frac{dx}{x^2+y^2}=\frac{dy}{2xy}=\frac{dz}{z(x+y)}


1) dx+dyx2+y2+2xy=dzz(x+y)\frac{dx+dy}{x^2+y^2+2xy}=\frac{dz}{z(x+y)}

dx+dy(x+y)2=dzz(x+y),dx+dyx+y=dzz,d(lnx+y)=d(lnz)\frac{dx+dy}{(x+y)^2}=\frac{dz}{z(x+y)}, \quad \frac{dx+dy}{x+y}=\frac{dz}{z} ,\quad d(\ln |x+y|)=d(\ln |z|)

lnx+y=lnz+C\ln |x+y|=\ln|z|+C

x+y=eCz|x+y|=e^C|z|

x+y=C^zx+y=\hat {C}z

2) dxdyx2+y22xy=dzz(x+y)\frac{dx-dy}{x^2+y^2-2xy}=\frac{dz}{z(x+y)}

dxdy(xy)2=dzC^z2,d(1xy)=d(1C^z)\frac{dx-dy}{(x-y)^2}=\frac{dz}{ \hat{C} z^2}, \quad d(\frac{-1}{x-y})=d(\frac{-1}{\hat{C}z})

1xy=1C^z+C=1x+y+C\frac{-1}{x-y}=\frac{-1}{\hat{C}z}+C’=\frac{-1}{x+y}+C’

1x+y1xy=2yx2y2=C\frac{1}{x+y}-\frac{1}{x-y}=\frac{-2y}{x^2-y^2}=C’


Answer: x+y=C1z,  2yx2y2=C2x+y=C_1z, \; \frac{-2y}{x^2-y^2}=C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS