Question #105574
Solve the following differential equations:
i) y sin2x dx = (1+ y²+ cos²x) dy
ii) (xy² - x²)dx + (3x²y² + x²y - 2x³ + y²)dy = 0
1
Expert's answer
2020-03-23T12:25:04-0400

i)

ysin2xdx(1+y2+cos2x)dy=0P(x,y)=ysin2x,Q(x,y)=(1+y2+cos2x)Py=sin2xQx=2cosx(sinx)=sin2xPy=Qxysin2xdx-(1+y^2+cos^2x)dy=0\\ P(x,y)=ysin2x, \\ Q(x,y)=-(1+y^2+cos^2x)\\ \frac{\partial P}{\partial y}=sin2x\\ \frac{\partial Q}{\partial x}=-2cosx\cdot (-sinx)=sin2x\\ \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}

equation in total differentials

u(x,y):ux=P(x,y)uy=Q(x,y)\exist u(x,y): \frac{\partial u}{\partial x}=P(x,y)\\ \frac{\partial u}{\partial y}=Q(x,y)\\

In our case

ux=ysin2xuy=(1+y2+cos2x)u(x,y)=ysin2xdx=y2cos2x+ϕ(y)\frac{\partial u}{\partial x}=ysin2x\\ \frac{\partial u}{\partial y}=-(1+y^2+cos^2x)\\ u(x,y)=\int ysin2xdx=-\frac{y}{2}cos2x+\phi(y)

Find

uy=12cos2x+ϕ(y)==12(2cos2x1)+ϕ(y)=12cos2x+ϕ(y)\frac{\partial u}{\partial y}=-\frac{1}{2}cos2x+\phi'(y)=\\ =-\frac{1}{2}(2cos^2x-1)+\phi'(y)=\frac{1}{2}-cos^2x+\phi'(y)

Then

12cos2x+ϕ(y)=1y2cos2xϕ(y)=32y2ϕ(y)=32yy33u(x,y)=y2cos2x32yy33\frac{1}{2}-cos^2x+\phi'(y)=-1-y^2-cos^2x\\ \phi'(y)=-\frac{3}{2}-y^2\\ \phi(y)=-\frac{3}{2}y-\frac{y^3}{3}\\ u(x,y)=-\frac{y}{2}cos2x-\frac{3}{2}y-\frac{y^3}{3}

Answer: solution of equation is

y2cos2x32yy33=C-\frac{y}{2}cos2x-\frac{3}{2}y-\frac{y^3}{3}=C


ii)

(xy2x2)dx+(3x2y2+x2y2x3+y2)dy=0P(x,y)=xy2x2Q(x,y)=3x2y2+x2y2x3+y2Py=2xyQx=6xy2+2xy6x2PyQx(xy^2-x^2)dx+(3x^2y^2+x^2y-2x^3+y^2)dy=0\\ P(x,y)=xy^2-x^2\\ Q(x,y)=3x^2y^2+x^2y-2x^3+y^2\\ \frac{\partial P}{\partial y}=2xy\\ \frac{\partial Q}{\partial x}=6xy^2+2xy-6x^2\\ \frac{\partial P}{\partial y}\neq\frac{\partial Q}{\partial x}

Find function μ(y)\mu(y)

μ(y)=eF(y)dy\mu(y)=e^{\int F(y)dy}

where

F(y)=PyQxP==2xy6xy22xy+6x2x2xy2=6(x2xy2)x2xy2=6μ(y)=e6dy=e6yF(y)=\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{-P}=\\ =\frac{2xy-6xy^2-2xy+6x^2}{x^2-xy^2}=\frac{6(x^2-xy^2)}{x^2-xy^2}=6\\ \mu(y)=e^{\int6dy}=e^{6y}

we multiply the equation by e6ye^{6y}

(xy2x2)e6ydx++(3x2y2+x2y2x3+y2)e6ydy=0P1(x,y)=(xy2x2)e6yQ1(x,y)=(3x2y2+x2y2x3+y2)e6yP1y=2xye6y+6e6y(xy2x2)==e6y(2xy+6xy26x2)Q1x=(6xy2+2xy6x2)e6yP1y=Q1x(xy^2-x^2)e^{6y}dx+\\ +(3x^2y^2+x^2y-2x^3+y^2)e^{6y}dy=0\\ P_1(x,y)=(xy^2-x^2)e^{6y}\\ Q_1(x,y)=(3x^2y^2+x^2y-2x^3+y^2)e^{6y}\\ \frac{\partial P_1}{\partial y}=2xye^{6y}+6e^{6y}(xy^2-x^2)=\\ =e^{6y}(2xy+6xy^2-6x^2)\\ \frac{\partial Q_1}{\partial x}=(6xy^2+2xy-6x^2)e^{6y}\\ \frac{\partial P_1}{\partial y}=\frac{\partial Q_1}{\partial x}

equation in total differentials

u(x,y):ux=P1(x,y)uy=Q1(x,y)\exist u(x,y): \frac{\partial u}{\partial x}=P_1(x,y)\\ \frac{\partial u}{\partial y}=Q_1(x,y)\\

in our case

ux=(xy2x2)e6yuy=(3x2y2+x2y2x3+y2)e6yu=((xy2x2)e6y)dx=(x2y22x33)e6y+ϕ(y)\frac{\partial u}{\partial x}=(xy^2-x^2)e^{6y}\\ \frac{\partial u}{\partial y}=(3x^2y^2+x^2y-2x^3+y^2)e^{6y}\\ u=\int((xy^2-x^2)e^{6y})dx=(\frac{x^2y^2}{2}-\frac{x^3}{3})e^{6y}+\phi(y)

Find

uy=x2ye6y+(x2y22x33)6e6y+ϕ(y)\frac{\partial u}{\partial y}=x^2ye^{6y}+(\frac{x^2y^2}{2}-\frac{x^3}{3})6e^{6y}+\phi'(y)

then

x2ye6y+(x2y22x33)6e6y+ϕ(y)==(3x2y2+x2y2x3+y2)e6yϕ(y)=y2e6yϕ(y)=y2e6ydy=16y2de6y==16(y2e6y2ye6ydy)=16(y2e6y13yde6y)==16(y2e6y13(ye6ye6ydy))==16y2e6y118ye6y+1108e6yx^2ye^{6y}+(\frac{x^2y^2}{2}-\frac{x^3}{3})6e^{6y}+\phi'(y)=\\ =(3x^2y^2+x^2y-2x^3+y^2)e^{6y}\\ \phi'(y)=y^2e^{6y}\\ \phi(y)=\int y^2e^{6y}dy=\frac{1}{6}\int y^2de^{6y}=\\ =\frac{1}{6}(y^2e^{6y}-\int 2ye^{6y}dy)=\frac{1}{6}(y^2e^{6y}-\frac{1}{3}\int yde^{6y})=\\ =\frac{1}{6}(y^2e^{6y}-\frac{1}{3}(ye^{6y}-\int e^{6y}dy))=\\ =\frac{1}{6}y^2e^{6y}-\frac{1}{18}ye^{6y}+\frac{1}{108}e^{6y}

u=(x2y22x33)e6y+16y2e6y118ye6y+1108e6yu=(\frac{x^2y^2}{2}-\frac{x^3}{3})e^{6y}+\frac{1}{6}y^2e^{6y}-\frac{1}{18}ye^{6y}+\frac{1}{108}e^{6y}

Answer: solution of equation is

(x2y22x33)e6y+16y2e6y118ye6y+1108e6y=c(\frac{x^2y^2}{2}-\frac{x^3}{3})e^{6y}+\frac{1}{6}y^2e^{6y}-\frac{1}{18}ye^{6y}+\frac{1}{108}e^{6y}=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS