i)
ysin2xdx−(1+y2+cos2x)dy=0P(x,y)=ysin2x,Q(x,y)=−(1+y2+cos2x)∂y∂P=sin2x∂x∂Q=−2cosx⋅(−sinx)=sin2x∂y∂P=∂x∂Q
equation in total differentials
∃u(x,y):∂x∂u=P(x,y)∂y∂u=Q(x,y)
In our case
∂x∂u=ysin2x∂y∂u=−(1+y2+cos2x)u(x,y)=∫ysin2xdx=−2ycos2x+ϕ(y)
Find
∂y∂u=−21cos2x+ϕ′(y)==−21(2cos2x−1)+ϕ′(y)=21−cos2x+ϕ′(y)
Then
21−cos2x+ϕ′(y)=−1−y2−cos2xϕ′(y)=−23−y2ϕ(y)=−23y−3y3u(x,y)=−2ycos2x−23y−3y3
Answer: solution of equation is
−2ycos2x−23y−3y3=C
ii)
(xy2−x2)dx+(3x2y2+x2y−2x3+y2)dy=0P(x,y)=xy2−x2Q(x,y)=3x2y2+x2y−2x3+y2∂y∂P=2xy∂x∂Q=6xy2+2xy−6x2∂y∂P=∂x∂Q
Find function μ(y)
μ(y)=e∫F(y)dy
where
F(y)=−P∂y∂P−∂x∂Q==x2−xy22xy−6xy2−2xy+6x2=x2−xy26(x2−xy2)=6μ(y)=e∫6dy=e6y
we multiply the equation by e6y
(xy2−x2)e6ydx++(3x2y2+x2y−2x3+y2)e6ydy=0P1(x,y)=(xy2−x2)e6yQ1(x,y)=(3x2y2+x2y−2x3+y2)e6y∂y∂P1=2xye6y+6e6y(xy2−x2)==e6y(2xy+6xy2−6x2)∂x∂Q1=(6xy2+2xy−6x2)e6y∂y∂P1=∂x∂Q1
equation in total differentials
∃u(x,y):∂x∂u=P1(x,y)∂y∂u=Q1(x,y)
in our case
∂x∂u=(xy2−x2)e6y∂y∂u=(3x2y2+x2y−2x3+y2)e6yu=∫((xy2−x2)e6y)dx=(2x2y2−3x3)e6y+ϕ(y)
Find
∂y∂u=x2ye6y+(2x2y2−3x3)6e6y+ϕ′(y)
then
x2ye6y+(2x2y2−3x3)6e6y+ϕ′(y)==(3x2y2+x2y−2x3+y2)e6yϕ′(y)=y2e6yϕ(y)=∫y2e6ydy=61∫y2de6y==61(y2e6y−∫2ye6ydy)=61(y2e6y−31∫yde6y)==61(y2e6y−31(ye6y−∫e6ydy))==61y2e6y−181ye6y+1081e6y
u=(2x2y2−3x3)e6y+61y2e6y−181ye6y+1081e6y
Answer: solution of equation is
(2x2y2−3x3)e6y+61y2e6y−181ye6y+1081e6y=c
Comments