Question #105514
Show that 2z=(ax+y)^2+b,where a,b are arbitrary constants is a complete
integral of px+qy-q^2=0
1
Expert's answer
2020-03-29T09:48:05-0400
2z=(ax+y)2+bz(x,y)=12(ax+y)2+b22z=(ax+y)^2+b\rightarrow\boxed{z(x,y)=\frac{1}{2}(ax+y)^2+\frac{b}{2}}



Then,



p=zx=122(ax+y)a=a2x+ayq=zy=122(ax+y)=ax+ypx+qyq2=(a2x+ay)x+(ax+y)y(ax+y)2==a2x2+axy+axy+y2(a2x2+2axy+y2)==a2x2+2axy+y2a2x22axyy2=0p=\frac{\partial z}{\partial x}=\frac{1}{2}\cdot 2\cdot(ax+y)\cdot a=a^2x+ay\\[0.3cm] q=\frac{\partial z}{\partial y}=\frac{1}{2}\cdot 2\cdot(ax+y)=ax+y\\[0.3cm] px+qy-q^2=(a^2x+ay)x+(ax+y)y-(ax+y)^2=\\[0.3cm] =a^2x^2+axy+axy+y^2-(a^2x^2+2axy+y^2)=\\[0.3cm] =a^2x^2+2axy+y^2-a^2x^2-2axy-y^2=0

Conclusion,



2z=(ax+y)2+bpx+qyq2=0\boxed{2z=(ax+y)^2+b\rightarrow px+qy-q^2=0}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS