2020-03-13T15:29:46-04:00
Show that 2z=(ax+y)^2+b,where a,b are arbitrary constants is a complete
integral of px+qy-q^2=0
1
2020-03-29T09:48:05-0400
2 z = ( a x + y ) 2 + b → z ( x , y ) = 1 2 ( a x + y ) 2 + b 2 2z=(ax+y)^2+b\rightarrow\boxed{z(x,y)=\frac{1}{2}(ax+y)^2+\frac{b}{2}} 2 z = ( a x + y ) 2 + b → z ( x , y ) = 2 1 ( a x + y ) 2 + 2 b
Then,
p = ∂ z ∂ x = 1 2 ⋅ 2 ⋅ ( a x + y ) ⋅ a = a 2 x + a y q = ∂ z ∂ y = 1 2 ⋅ 2 ⋅ ( a x + y ) = a x + y p x + q y − q 2 = ( a 2 x + a y ) x + ( a x + y ) y − ( a x + y ) 2 = = a 2 x 2 + a x y + a x y + y 2 − ( a 2 x 2 + 2 a x y + y 2 ) = = a 2 x 2 + 2 a x y + y 2 − a 2 x 2 − 2 a x y − y 2 = 0 p=\frac{\partial z}{\partial x}=\frac{1}{2}\cdot 2\cdot(ax+y)\cdot a=a^2x+ay\\[0.3cm]
q=\frac{\partial z}{\partial y}=\frac{1}{2}\cdot 2\cdot(ax+y)=ax+y\\[0.3cm]
px+qy-q^2=(a^2x+ay)x+(ax+y)y-(ax+y)^2=\\[0.3cm]
=a^2x^2+axy+axy+y^2-(a^2x^2+2axy+y^2)=\\[0.3cm]
=a^2x^2+2axy+y^2-a^2x^2-2axy-y^2=0 p = ∂ x ∂ z = 2 1 ⋅ 2 ⋅ ( a x + y ) ⋅ a = a 2 x + a y q = ∂ y ∂ z = 2 1 ⋅ 2 ⋅ ( a x + y ) = a x + y p x + q y − q 2 = ( a 2 x + a y ) x + ( a x + y ) y − ( a x + y ) 2 = = a 2 x 2 + a x y + a x y + y 2 − ( a 2 x 2 + 2 a x y + y 2 ) = = a 2 x 2 + 2 a x y + y 2 − a 2 x 2 − 2 a x y − y 2 = 0
Conclusion,
2 z = ( a x + y ) 2 + b → p x + q y − q 2 = 0 \boxed{2z=(ax+y)^2+b\rightarrow px+qy-q^2=0} 2 z = ( a x + y ) 2 + b → p x + q y − q 2 = 0
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments