Equation (i)
(D2+DD′+D+D′+1)z=0Let us give some theory to understand how to solve this equation:
Put D=h and D′=k in f(D,D′)=0 , then we get an
auxillary equation is
f(h,k)=0(1)
Solve (1) and find the value of h interm of k or k interm of h . Let the n values of h be denoted by f1(k) , f2(k) , f3(k) , . . . , fn(k) .
Then
C.F.=∑C1ef1(k)x+ky+…+∑Cnefn(k)x+kyIn our case,
(D2+DD′+D+D′+1)≡h2+hk+h+k+1=0h2+(1+k)h+(k+1)=0−quadratic equationD=(k+1)2−4(k+1)=(k+1)(k−3)⎣⎡h1=2−(k+1)+(k+1)(k−3)h2=2−(k+1)−(k+1)(k−3)Then,
C.F.=∑C1eh1(k)x+ky+∑C2eh2(k)x+ky==∑C1ex⋅(2−k−1−(k+1)(k−3))+ky+∑C2ex⋅(2−k−1+(k+1)(k−3))+ky==e−x/2⋅∑C1ex⋅(2−k−(k+1)(k−3))+ky++e−x/2⋅∑C2ex⋅(2−k−1+(k+1)(k−3))+ky==e−x/2⋅(f1(L1x+ky)+f2(L2x+ky)) Conclusion,
(D2+DD′+D+D′+1)z=0⟶C.F.=e−x/2⋅(f1(L1x+ky)+f2(L2x+ky)),where⎣⎡L1=2−k+(k+1)(k−3)L2=2−k−(k+1)(k−3)
Question (ii)
(D2−2DD′+D′2)z=tan(x+y)⟶z=C.F.+P.I.1 STEP: We try to find C.F.
(D2−2DD′+D′2)z=0The auxillary equation is
m2−2m+1=0⟶(m−1)2=0⟶m1,2=1 Then,
C.F.=f1(y+1⋅x)+x⋅f2(y+1⋅x)C.F.=f1(y+x)+x⋅f2(y+x) 2 STEP: We try to find P.I.
Let us give some theory to understand how to solve this equation:
If F(x,y) is any function, resolve F(D,D′) into linear factors say
(D−m1D′),(D−m2D′),...,(D−mnD′)
then
P.I.=(D−m1D′)(D−m2D′)...(D−mnD′)1F(x,y)
Note:
(1)(D−mD′)1F(x,y)=∫F(x,c−mx)dx,wherey=c−mx(2)(D+mD′)1F(x,y)=∫F(x,c+mx)dx,wherey=c+mx
In our case,
P.I.=(D−1⋅D′)21tan(x+y)==(D−1⋅D′)1⋅(D−1⋅D′)1tan(x+y)==(D−1⋅D′)1⋅∫tan(x+c−x)dx=[x+y=c]==(D−1⋅D′)1⋅∫tan(c)dx=(D−1⋅D′)1⋅xtan(c)==∫xtan(c)dx=2x2tanc+C1≡2x2tan(x+y)+C1
Conclusion,
P.I.=2x2⋅tan(x+y)+C1 General conclusion,
z(x,y)=C.F.+P.I.⟶z(x,y)=f1(y+x)+x⋅f2(y+x)+2x2⋅tan(x+y)+C1
ANSWER
Question(i)
(D2+DD′+D+D′+1)z=0⟶C.F.=e−x/2⋅(f1(L1x+ky)+f2(L2x+ky)),where⎣⎡L1=2−k+(k+1)(k−3)L2=2−k−(k+1)(k−3)
Question(ii)
z(x,y)=f1(y+x)+x⋅f2(y+x)+2x2⋅tan(x+y)+C1
Comments