Equation (i)
( D 2 + D D ′ + D + D ′ + 1 ) z = 0 \left(D^2+DD'+D+D'+1\right)z=0 ( D 2 + D D ′ + D + D ′ + 1 ) z = 0 Let us give some theory to understand how to solve this equation:
Put D = h D=h D = h and D ′ = k D'=k D ′ = k in f ( D , D ′ ) = 0 f(D, D')=0 f ( D , D ′ ) = 0 , then we get an
auxillary equation is
f ( h , k ) = 0 ( 1 ) f(h, k)=0 \quad\quad\quad\quad(1) f ( h , k ) = 0 ( 1 )
Solve ( 1 ) (1) ( 1 ) and find the value of h h h interm of k or k k k interm of h h h . Let the n n n values of h h h be denoted by f 1 ( k ) f_1(k) f 1 ( k ) , f 2 ( k ) f_2(k) f 2 ( k ) , f 3 ( k ) f_3(k) f 3 ( k ) , . . . , f n ( k ) f_n(k) f n ( k ) .
Then
C . F . = ∑ C 1 e f 1 ( k ) x + k y + … + ∑ C n e f n ( k ) x + k y C.F.=\sum C_1e^{f_1(k)x+ky}+\ldots+\sum C_ne^{f_n(k)x+ky} C . F . = ∑ C 1 e f 1 ( k ) x + k y + … + ∑ C n e f n ( k ) x + k y In our case,
( D 2 + D D ′ + D + D ′ + 1 ) ≡ h 2 + h k + h + k + 1 = 0 h 2 + ( 1 + k ) h + ( k + 1 ) = 0 − quadratic equation D = ( k + 1 ) 2 − 4 ( k + 1 ) = ( k + 1 ) ( k − 3 ) [ h 1 = − ( k + 1 ) + ( k + 1 ) ( k − 3 ) 2 h 2 = − ( k + 1 ) − ( k + 1 ) ( k − 3 ) 2 \left(D^2+DD'+D+D'+1\right)\equiv h^2+hk+h+k+1=0\\[0.3cm]
h^2+(1+k)h+(k+1)=0-\text{quadratic equation}\\[0.3cm]
\sqrt{D}=\sqrt{(k+1)^2-4(k+1)}=\sqrt{(k+1)(k-3)}\\[0.3cm]
\left[\begin{array}{l}
h_1=\displaystyle\frac{-(k+1)+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm]
h_2=\displaystyle\frac{-(k+1)-\sqrt{(k+1)(k-3)}}{2}
\end{array}\right. ( D 2 + D D ′ + D + D ′ + 1 ) ≡ h 2 + hk + h + k + 1 = 0 h 2 + ( 1 + k ) h + ( k + 1 ) = 0 − quadratic equation D = ( k + 1 ) 2 − 4 ( k + 1 ) = ( k + 1 ) ( k − 3 ) ⎣ ⎡ h 1 = 2 − ( k + 1 ) + ( k + 1 ) ( k − 3 ) h 2 = 2 − ( k + 1 ) − ( k + 1 ) ( k − 3 ) Then,
C . F . = ∑ C 1 e h 1 ( k ) x + k y + ∑ C 2 e h 2 ( k ) x + k y = = ∑ C 1 e x ⋅ ( − k − 1 − ( k + 1 ) ( k − 3 ) 2 ) + k y + ∑ C 2 e x ⋅ ( − k − 1 + ( k + 1 ) ( k − 3 ) 2 ) + k y = = e − x / 2 ⋅ ∑ C 1 e x ⋅ ( − k − ( k + 1 ) ( k − 3 ) 2 ) + k y + + e − x / 2 ⋅ ∑ C 2 e x ⋅ ( − k − 1 + ( k + 1 ) ( k − 3 ) 2 ) + k y = = e − x / 2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) C.F.=\sum C_1e^{h_1(k)x+ky}+\sum C_2e^{h_2(k)x+ky}=\\[0.3cm]
=\sum C_1e^{x\cdot\left(\frac{-k-1-\sqrt{(k+1)(k-3)}}{2}\right)+ky}+\sum C_2e^{x\cdot\left(\frac{-k-1+\sqrt{(k+1)(k-3)}}{2}\right)+ky}=\\[0.3cm]
=e^{-x/2}\cdot\sum C_1e^{x\cdot\left(\frac{-k-\sqrt{(k+1)(k-3)}}{2}\right)+ky}+\\[0.3cm]
+e^{-x/2}\cdot\sum C_2e^{x\cdot\left(\frac{-k-1+\sqrt{(k+1)(k-3)}}{2}\right)+ky}=\\[0.3cm]
=e^{-x/2}\cdot\left(f_1\left(L_1x+ky\right)+f_2\left(L_2x+ky\right)\right) C . F . = ∑ C 1 e h 1 ( k ) x + k y + ∑ C 2 e h 2 ( k ) x + k y = = ∑ C 1 e x ⋅ ( 2 − k − 1 − ( k + 1 ) ( k − 3 ) ) + k y + ∑ C 2 e x ⋅ ( 2 − k − 1 + ( k + 1 ) ( k − 3 ) ) + k y = = e − x /2 ⋅ ∑ C 1 e x ⋅ ( 2 − k − ( k + 1 ) ( k − 3 ) ) + k y + + e − x /2 ⋅ ∑ C 2 e x ⋅ ( 2 − k − 1 + ( k + 1 ) ( k − 3 ) ) + k y = = e − x /2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) Conclusion,
( D 2 + D D ′ + D + D ′ + 1 ) z = 0 ⟶ C . F . = e − x / 2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) , where [ L 1 = − k + ( k + 1 ) ( k − 3 ) 2 L 2 = − k − ( k + 1 ) ( k − 3 ) 2 \left(D^2+DD'+D+D'+1\right)z=0\longrightarrow\\[0.3cm]
C.F.=e^{-x/2}\cdot\left(f_1(L_1x+ky)+f_2(L_2x+ky)\right),\text{where}\\[0.3cm]
\left[\begin{array}{l}
L_1=\displaystyle\frac{-k+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm]
L_2=\displaystyle\frac{-k-\sqrt{(k+1)(k-3)}}{2}
\end{array}\right. ( D 2 + D D ′ + D + D ′ + 1 ) z = 0 ⟶ C . F . = e − x /2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) , where ⎣ ⎡ L 1 = 2 − k + ( k + 1 ) ( k − 3 ) L 2 = 2 − k − ( k + 1 ) ( k − 3 )
Question (ii)
( D 2 − 2 D D ′ + D ′ 2 ) z = tan ( x + y ) ⟶ z = C . F . + P . I . (D^2-2DD'+D'^2)z=\tan(x+y)\longrightarrow\\[0.3cm]
z=C.F.+P.I. ( D 2 − 2 D D ′ + D ′2 ) z = tan ( x + y ) ⟶ z = C . F . + P . I . 1 STEP: We try to find C.F.
( D 2 − 2 D D ′ + D ′ 2 ) z = 0 (D^2-2DD'+D'^2)z=0 ( D 2 − 2 D D ′ + D ′2 ) z = 0 The auxillary equation is
m 2 − 2 m + 1 = 0 ⟶ ( m − 1 ) 2 = 0 ⟶ m 1 , 2 = 1 m^2-2m+1=0\longrightarrow (m-1)^2=0\longrightarrow\\[0.3cm]
m_{1,2}=1 m 2 − 2 m + 1 = 0 ⟶ ( m − 1 ) 2 = 0 ⟶ m 1 , 2 = 1 Then,
C . F . = f 1 ( y + 1 ⋅ x ) + x ⋅ f 2 ( y + 1 ⋅ x ) C . F . = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) C.F.=f_1(y+1\cdot x)+x\cdot f_2(y+1\cdot x)\\[0.3cm]
\boxed{C.F.=f_1(y+x)+x\cdot f_2(y+x)} C . F . = f 1 ( y + 1 ⋅ x ) + x ⋅ f 2 ( y + 1 ⋅ x ) C . F . = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) 2 STEP: We try to find P.I.
Let us give some theory to understand how to solve this equation:
If F ( x , y ) F(x,y) F ( x , y ) is any function, resolve F ( D , D ′ ) F(D, D') F ( D , D ′ ) into linear factors say
( D − m 1 D ′ ) , ( D − m 2 D ′ ) , . . . , ( D − m n D ′ ) (D−m_1D'),(D−m_2D'), . . . ,(D−m_nD') ( D − m 1 D ′ ) , ( D − m 2 D ′ ) , ... , ( D − m n D ′ )
then
P . I . = 1 ( D − m 1 D ′ ) ( D − m 2 D ′ ) . . . ( D − m n D ′ ) F ( x , y ) P.I.=\frac{1}{(D−m_1D')(D−m_2D'). . .(D−m_nD')} F(x, y) P . I . = ( D − m 1 D ′ ) ( D − m 2 D ′ ) ... ( D − m n D ′ ) 1 F ( x , y )
Note:
( 1 ) 1 ( D − m D ′ ) F ( x , y ) = ∫ F ( x , c − m x ) d x , where y = c − m x ( 2 ) 1 ( D + m D ′ ) F ( x , y ) = ∫ F ( x , c + m x ) d x , where y = c + m x (1)\,\,\,\frac{1}{(D−mD')}F(x, y)=\int F(x, c−mx)dx,\,\,\text{where}\,\,y=c−mx\\[0.3cm]
(2)\,\,\,\frac{1}{(D+mD')}F(x, y)=\int F(x, c+mx)dx,\,\,\text{where}\,\,y=c+mx ( 1 ) ( D − m D ′ ) 1 F ( x , y ) = ∫ F ( x , c − m x ) d x , where y = c − m x ( 2 ) ( D + m D ′ ) 1 F ( x , y ) = ∫ F ( x , c + m x ) d x , where y = c + m x
In our case,
P . I . = 1 ( D − 1 ⋅ D ′ ) 2 tan ( x + y ) = = 1 ( D − 1 ⋅ D ′ ) ⋅ 1 ( D − 1 ⋅ D ′ ) tan ( x + y ) = = 1 ( D − 1 ⋅ D ′ ) ⋅ ∫ tan ( x + c − x ) d x = [ x + y = c ] = = 1 ( D − 1 ⋅ D ′ ) ⋅ ∫ tan ( c ) d x = 1 ( D − 1 ⋅ D ′ ) ⋅ x tan ( c ) = = ∫ x tan ( c ) d x = x 2 2 tan c + C 1 ≡ x 2 2 tan ( x + y ) + C 1 P.I.=\frac{1}{(D-1\cdot D')^2}\tan(x+y)=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\cdot\frac{1}{(D-1\cdot D')}\tan(x+y)=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\cdot\int\tan(x+c-x)dx=[x+y=c]=\\[0.3cm]
=\frac{1}{(D-1\cdot D')}\cdot\int\tan(c)dx=\frac{1}{(D-1\cdot D')}\cdot x\tan(c)=\\[0.3cm]
=\int x\tan(c)dx=\frac{x^2}{2}\tan{c}+C_1\equiv\frac{x^2}{2}\tan(x+y)+C_1 P . I . = ( D − 1 ⋅ D ′ ) 2 1 tan ( x + y ) = = ( D − 1 ⋅ D ′ ) 1 ⋅ ( D − 1 ⋅ D ′ ) 1 tan ( x + y ) = = ( D − 1 ⋅ D ′ ) 1 ⋅ ∫ tan ( x + c − x ) d x = [ x + y = c ] = = ( D − 1 ⋅ D ′ ) 1 ⋅ ∫ tan ( c ) d x = ( D − 1 ⋅ D ′ ) 1 ⋅ x tan ( c ) = = ∫ x tan ( c ) d x = 2 x 2 tan c + C 1 ≡ 2 x 2 tan ( x + y ) + C 1
Conclusion,
P . I . = x 2 2 ⋅ tan ( x + y ) + C 1 \boxed{P.I.=\frac{x^2}{2}\cdot\tan(x+y)+C_1} P . I . = 2 x 2 ⋅ tan ( x + y ) + C 1 General conclusion,
z ( x , y ) = C . F . + P . I . ⟶ z ( x , y ) = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) + x 2 2 ⋅ tan ( x + y ) + C 1 z(x,y)=C.F.+P.I.\longrightarrow\\[0.3cm]
\boxed{z(x,y)=f_1(y+x)+x\cdot f_2(y+x)+\frac{x^2}{2}\cdot\tan(x+y)+C_1} z ( x , y ) = C . F . + P . I . ⟶ z ( x , y ) = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) + 2 x 2 ⋅ tan ( x + y ) + C 1
ANSWER
Question(i)
( D 2 + D D ′ + D + D ′ + 1 ) z = 0 ⟶ C . F . = e − x / 2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) , where [ L 1 = − k + ( k + 1 ) ( k − 3 ) 2 L 2 = − k − ( k + 1 ) ( k − 3 ) 2 \left(D^2+DD'+D+D'+1\right)z=0\longrightarrow\\[0.3cm]
C.F.=e^{-x/2}\cdot\left(f_1(L_1x+ky)+f_2(L_2x+ky)\right),\text{where}\\[0.3cm]
\left[\begin{array}{l}
L_1=\displaystyle\frac{-k+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm]
L_2=\displaystyle\frac{-k-\sqrt{(k+1)(k-3)}}{2}
\end{array}\right. ( D 2 + D D ′ + D + D ′ + 1 ) z = 0 ⟶ C . F . = e − x /2 ⋅ ( f 1 ( L 1 x + k y ) + f 2 ( L 2 x + k y ) ) , where ⎣ ⎡ L 1 = 2 − k + ( k + 1 ) ( k − 3 ) L 2 = 2 − k − ( k + 1 ) ( k − 3 )
Question(ii)
z ( x , y ) = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) + x 2 2 ⋅ tan ( x + y ) + C 1 z(x,y)=f_1(y+x)+x\cdot f_2(y+x)+\frac{x^2}{2}\cdot\tan(x+y)+C_1 z ( x , y ) = f 1 ( y + x ) + x ⋅ f 2 ( y + x ) + 2 x 2 ⋅ tan ( x + y ) + C 1
Comments