Equation (i)
"\\left(D^2+DD'+D+D'+1\\right)z=0"Let us give some theory to understand how to solve this equation:
Put "D=h" and "D'=k" in "f(D, D')=0" , then we get an
auxillary equation is
Solve "(1)" and find the value of "h" interm of k or "k" interm of "h" . Let the "n" values of "h" be denoted by "f_1(k)" , "f_2(k)" , "f_3(k)" , . . . , "f_n(k)" .
Then
In our case,
"\\left(D^2+DD'+D+D'+1\\right)\\equiv h^2+hk+h+k+1=0\\\\[0.3cm]\nh^2+(1+k)h+(k+1)=0-\\text{quadratic equation}\\\\[0.3cm]\n\\sqrt{D}=\\sqrt{(k+1)^2-4(k+1)}=\\sqrt{(k+1)(k-3)}\\\\[0.3cm]\n\\left[\\begin{array}{l}\nh_1=\\displaystyle\\frac{-(k+1)+\\sqrt{(k+1)(k-3)}}{2}\\\\[0.3cm]\nh_2=\\displaystyle\\frac{-(k+1)-\\sqrt{(k+1)(k-3)}}{2}\n\\end{array}\\right."
Then,
Conclusion,
"\\left(D^2+DD'+D+D'+1\\right)z=0\\longrightarrow\\\\[0.3cm]\nC.F.=e^{-x\/2}\\cdot\\left(f_1(L_1x+ky)+f_2(L_2x+ky)\\right),\\text{where}\\\\[0.3cm]\n\\left[\\begin{array}{l}\nL_1=\\displaystyle\\frac{-k+\\sqrt{(k+1)(k-3)}}{2}\\\\[0.3cm]\nL_2=\\displaystyle\\frac{-k-\\sqrt{(k+1)(k-3)}}{2}\n\\end{array}\\right."
Question (ii)
"(D^2-2DD'+D'^2)z=\\tan(x+y)\\longrightarrow\\\\[0.3cm]\nz=C.F.+P.I."1 STEP: We try to find C.F.
The auxillary equation is
Then,
2 STEP: We try to find P.I.
Let us give some theory to understand how to solve this equation:
If "F(x,y)" is any function, resolve "F(D, D')" into linear factors say
then
Note:
"(1)\\,\\,\\,\\frac{1}{(D\u2212mD')}F(x, y)=\\int F(x, c\u2212mx)dx,\\,\\,\\text{where}\\,\\,y=c\u2212mx\\\\[0.3cm]\n(2)\\,\\,\\,\\frac{1}{(D+mD')}F(x, y)=\\int F(x, c+mx)dx,\\,\\,\\text{where}\\,\\,y=c+mx"In our case,
Conclusion,
General conclusion,
ANSWER
Question(i)
"\\left(D^2+DD'+D+D'+1\\right)z=0\\longrightarrow\\\\[0.3cm]\nC.F.=e^{-x\/2}\\cdot\\left(f_1(L_1x+ky)+f_2(L_2x+ky)\\right),\\text{where}\\\\[0.3cm]\n\\left[\\begin{array}{l}\nL_1=\\displaystyle\\frac{-k+\\sqrt{(k+1)(k-3)}}{2}\\\\[0.3cm]\nL_2=\\displaystyle\\frac{-k-\\sqrt{(k+1)(k-3)}}{2}\n\\end{array}\\right."
Question(ii)
"z(x,y)=f_1(y+x)+x\\cdot f_2(y+x)+\\frac{x^2}{2}\\cdot\\tan(x+y)+C_1"
Comments
Leave a comment