Question #105579
Solve the following equations:
(i) (D² + DD′ + D + D′ + 1)z = 0
(ii) (D² − 2DD′+ D′²)z = tan(y + x).
1
Expert's answer
2020-03-16T13:18:08-0400

Equation (i)

(D2+DD+D+D+1)z=0\left(D^2+DD'+D+D'+1\right)z=0

Let us give some theory to understand how to solve this equation:

Put D=hD=h and D=kD'=k in f(D,D)=0f(D, D')=0 , then we get an

auxillary equation is


f(h,k)=0(1)f(h, k)=0 \quad\quad\quad\quad(1)

Solve (1)(1) and find the value of hh interm of k or kk interm of hh . Let the nn values of hh be denoted by f1(k)f_1(k) , f2(k)f_2(k) , f3(k)f_3(k) , . . . , fn(k)f_n(k) .

Then


C.F.=C1ef1(k)x+ky++Cnefn(k)x+kyC.F.=\sum C_1e^{f_1(k)x+ky}+\ldots+\sum C_ne^{f_n(k)x+ky}

In our case,

(D2+DD+D+D+1)h2+hk+h+k+1=0h2+(1+k)h+(k+1)=0quadratic equationD=(k+1)24(k+1)=(k+1)(k3)[h1=(k+1)+(k+1)(k3)2h2=(k+1)(k+1)(k3)2\left(D^2+DD'+D+D'+1\right)\equiv h^2+hk+h+k+1=0\\[0.3cm] h^2+(1+k)h+(k+1)=0-\text{quadratic equation}\\[0.3cm] \sqrt{D}=\sqrt{(k+1)^2-4(k+1)}=\sqrt{(k+1)(k-3)}\\[0.3cm] \left[\begin{array}{l} h_1=\displaystyle\frac{-(k+1)+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm] h_2=\displaystyle\frac{-(k+1)-\sqrt{(k+1)(k-3)}}{2} \end{array}\right.

Then,


C.F.=C1eh1(k)x+ky+C2eh2(k)x+ky==C1ex(k1(k+1)(k3)2)+ky+C2ex(k1+(k+1)(k3)2)+ky==ex/2C1ex(k(k+1)(k3)2)+ky++ex/2C2ex(k1+(k+1)(k3)2)+ky==ex/2(f1(L1x+ky)+f2(L2x+ky))C.F.=\sum C_1e^{h_1(k)x+ky}+\sum C_2e^{h_2(k)x+ky}=\\[0.3cm] =\sum C_1e^{x\cdot\left(\frac{-k-1-\sqrt{(k+1)(k-3)}}{2}\right)+ky}+\sum C_2e^{x\cdot\left(\frac{-k-1+\sqrt{(k+1)(k-3)}}{2}\right)+ky}=\\[0.3cm] =e^{-x/2}\cdot\sum C_1e^{x\cdot\left(\frac{-k-\sqrt{(k+1)(k-3)}}{2}\right)+ky}+\\[0.3cm] +e^{-x/2}\cdot\sum C_2e^{x\cdot\left(\frac{-k-1+\sqrt{(k+1)(k-3)}}{2}\right)+ky}=\\[0.3cm] =e^{-x/2}\cdot\left(f_1\left(L_1x+ky\right)+f_2\left(L_2x+ky\right)\right)

Conclusion,

(D2+DD+D+D+1)z=0C.F.=ex/2(f1(L1x+ky)+f2(L2x+ky)),where[L1=k+(k+1)(k3)2L2=k(k+1)(k3)2\left(D^2+DD'+D+D'+1\right)z=0\longrightarrow\\[0.3cm] C.F.=e^{-x/2}\cdot\left(f_1(L_1x+ky)+f_2(L_2x+ky)\right),\text{where}\\[0.3cm] \left[\begin{array}{l} L_1=\displaystyle\frac{-k+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm] L_2=\displaystyle\frac{-k-\sqrt{(k+1)(k-3)}}{2} \end{array}\right.

Question (ii)

(D22DD+D2)z=tan(x+y)z=C.F.+P.I.(D^2-2DD'+D'^2)z=\tan(x+y)\longrightarrow\\[0.3cm] z=C.F.+P.I.

1 STEP: We try to find C.F.


(D22DD+D2)z=0(D^2-2DD'+D'^2)z=0

The auxillary equation is


m22m+1=0(m1)2=0m1,2=1m^2-2m+1=0\longrightarrow (m-1)^2=0\longrightarrow\\[0.3cm] m_{1,2}=1

Then,


C.F.=f1(y+1x)+xf2(y+1x)C.F.=f1(y+x)+xf2(y+x)C.F.=f_1(y+1\cdot x)+x\cdot f_2(y+1\cdot x)\\[0.3cm] \boxed{C.F.=f_1(y+x)+x\cdot f_2(y+x)}

2 STEP: We try to find P.I.

Let us give some theory to understand how to solve this equation:

If F(x,y)F(x,y) is any function, resolve F(D,D)F(D, D') into linear factors say


(Dm1D),(Dm2D),...,(DmnD)(D−m_1D'),(D−m_2D'), . . . ,(D−m_nD')


then


P.I.=1(Dm1D)(Dm2D)...(DmnD)F(x,y)P.I.=\frac{1}{(D−m_1D')(D−m_2D'). . .(D−m_nD')} F(x, y)

Note:

(1)1(DmD)F(x,y)=F(x,cmx)dx,wherey=cmx(2)1(D+mD)F(x,y)=F(x,c+mx)dx,wherey=c+mx(1)\,\,\,\frac{1}{(D−mD')}F(x, y)=\int F(x, c−mx)dx,\,\,\text{where}\,\,y=c−mx\\[0.3cm] (2)\,\,\,\frac{1}{(D+mD')}F(x, y)=\int F(x, c+mx)dx,\,\,\text{where}\,\,y=c+mx



In our case,


P.I.=1(D1D)2tan(x+y)==1(D1D)1(D1D)tan(x+y)==1(D1D)tan(x+cx)dx=[x+y=c]==1(D1D)tan(c)dx=1(D1D)xtan(c)==xtan(c)dx=x22tanc+C1x22tan(x+y)+C1P.I.=\frac{1}{(D-1\cdot D')^2}\tan(x+y)=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\cdot\frac{1}{(D-1\cdot D')}\tan(x+y)=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\cdot\int\tan(x+c-x)dx=[x+y=c]=\\[0.3cm] =\frac{1}{(D-1\cdot D')}\cdot\int\tan(c)dx=\frac{1}{(D-1\cdot D')}\cdot x\tan(c)=\\[0.3cm] =\int x\tan(c)dx=\frac{x^2}{2}\tan{c}+C_1\equiv\frac{x^2}{2}\tan(x+y)+C_1


Conclusion,


P.I.=x22tan(x+y)+C1\boxed{P.I.=\frac{x^2}{2}\cdot\tan(x+y)+C_1}

General conclusion,


z(x,y)=C.F.+P.I.z(x,y)=f1(y+x)+xf2(y+x)+x22tan(x+y)+C1z(x,y)=C.F.+P.I.\longrightarrow\\[0.3cm] \boxed{z(x,y)=f_1(y+x)+x\cdot f_2(y+x)+\frac{x^2}{2}\cdot\tan(x+y)+C_1}

ANSWER

Question(i)

(D2+DD+D+D+1)z=0C.F.=ex/2(f1(L1x+ky)+f2(L2x+ky)),where[L1=k+(k+1)(k3)2L2=k(k+1)(k3)2\left(D^2+DD'+D+D'+1\right)z=0\longrightarrow\\[0.3cm] C.F.=e^{-x/2}\cdot\left(f_1(L_1x+ky)+f_2(L_2x+ky)\right),\text{where}\\[0.3cm] \left[\begin{array}{l} L_1=\displaystyle\frac{-k+\sqrt{(k+1)(k-3)}}{2}\\[0.3cm] L_2=\displaystyle\frac{-k-\sqrt{(k+1)(k-3)}}{2} \end{array}\right.

Question(ii)

z(x,y)=f1(y+x)+xf2(y+x)+x22tan(x+y)+C1z(x,y)=f_1(y+x)+x\cdot f_2(y+x)+\frac{x^2}{2}\cdot\tan(x+y)+C_1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS