Question #105582
Find the differential equation of the family of surfaces φ[ z(x+y)² , x² ‐ y²] = 0
1
Expert's answer
2020-03-17T16:13:47-0400

φ(z(x+y)2,x2y2)=0\varphi (z(x+y)^2,x^2-y^2 )=0

Therefore, z(x+y)2=C1,  x2y2=C2z(x+y)^2=C_1, \ \ x^2-y^2=C_2


z(x+y)2=C1 2z(x+y)dx+2z(x+y)dy+(x+y)2dz=0,z(x+y)^2=C_1 \ \Rightarrow 2z(x+y)dx +2z(x+y)dy+(x+y)^2dz=0,

2zdx+2zdy+(x+y)dz=0,  2z(dx+dy)=(x+y)dz,  dx+dyx+y=dz2z2zdx+2zdy+(x+y)dz=0, \ \ 2z(dx+dy)=-(x+y)dz,\ \ \frac{dx+dy}{x+y}=-\frac{dz}{2z}


x2y2=C2 2xdx2ydy=0,  xdx=ydy,  dxy=dyxx^2-y^2=C_2 \ \Rightarrow 2xdx-2ydy=0, \ \ xdx=ydy, \ \ \frac{dx}{y}=\frac{dy}{x}

dxy=dyx=dx+dyy+x=dz2z\frac{dx}{y}=\frac{dy}{x}=\frac{dx+dy}{y+x}=-\frac{dz }{2z}


Answer: dxy=dyx=dz2z\frac{dx}{y}=\frac{dy}{x}=\frac{dz }{-2z}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS