φ(z(x+y)2,x2−y2)=0
Therefore, z(x+y)2=C1, x2−y2=C2
z(x+y)2=C1 ⇒2z(x+y)dx+2z(x+y)dy+(x+y)2dz=0,
2zdx+2zdy+(x+y)dz=0, 2z(dx+dy)=−(x+y)dz, x+ydx+dy=−2zdz
x2−y2=C2 ⇒2xdx−2ydy=0, xdx=ydy, ydx=xdy
ydx=xdy=y+xdx+dy=−2zdz
Answer: ydx=xdy=−2zdz
Comments