"\\varphi (z(x+y)^2,x^2-y^2 )=0"
Therefore, "z(x+y)^2=C_1, \\ \\ x^2-y^2=C_2"
"z(x+y)^2=C_1 \\ \\Rightarrow 2z(x+y)dx +2z(x+y)dy+(x+y)^2dz=0,"
"2zdx+2zdy+(x+y)dz=0, \\ \\ 2z(dx+dy)=-(x+y)dz,\\ \\ \\frac{dx+dy}{x+y}=-\\frac{dz}{2z}"
"x^2-y^2=C_2 \\ \\Rightarrow 2xdx-2ydy=0, \\ \\ xdx=ydy, \\ \\ \\frac{dx}{y}=\\frac{dy}{x}"
"\\frac{dx}{y}=\\frac{dy}{x}=\\frac{dx+dy}{y+x}=-\\frac{dz }{2z}"
Answer: "\\frac{dx}{y}=\\frac{dy}{x}=\\frac{dz }{-2z}"
Comments
Leave a comment