"(n-1)\u00b2u_{xx} - y^{2n} u_{yy} = ny^{2n-1}u_y\\\\\nA(x,y)u_{xx}+2B(x,y)u_{xy}+C(x,y)u_{yy}=\\\\\n=F(x,y,u,u_x,u_y)\\\\"
The type of second-order PDE at a point
"(x_0,y_0)" depends on the sign of the discriminant defined as
"\\Delta(x_0,y_0)=B^2-AC"
In our case
"A=(n-1)^2, B=0, C=-y^{2n}\\\\\n\\Delta =0^2 -(n-1)^2(-y^{2n})=(n-1)^2y^{2n}"
i) parabolic
"\\Delta(x_0,y_0)=0\\implies\\\\\n(n-1)^2y^{2n}=0\\implies\\\\\nn=1 \\quad or \\quad y=0."
ii) hyperbolic
"\\Delta(x_0,y_0)>0\\implies\\\\\n(n-1)^2y^{2n}>0\\implies\\\\\nn\\neq1 \\quad \\quad y\\neq 0."
Comments
Leave a comment