Answer to Question #105583 in Differential Equations for Gayatri Yadav

Question #105583
Find the values of n for which the equation (n-1)²uxx - y^2n uyy = ny^(2n-1)uy is
i) parabolic ii) hyperbolic.
1
Expert's answer
2020-03-19T15:56:10-0400

(n1)²uxxy2nuyy=ny2n1uyA(x,y)uxx+2B(x,y)uxy+C(x,y)uyy==F(x,y,u,ux,uy)(n-1)²u_{xx} - y^{2n} u_{yy} = ny^{2n-1}u_y\\ A(x,y)u_{xx}+2B(x,y)u_{xy}+C(x,y)u_{yy}=\\ =F(x,y,u,u_x,u_y)\\

The type of second-order PDE at a point 

(x0,y0)(x_0,y_0)  depends on the sign of the discriminant defined as

Δ(x0,y0)=B2AC\Delta(x_0,y_0)=B^2-AC

In our case

A=(n1)2,B=0,C=y2nΔ=02(n1)2(y2n)=(n1)2y2nA=(n-1)^2, B=0, C=-y^{2n}\\ \Delta =0^2 -(n-1)^2(-y^{2n})=(n-1)^2y^{2n}

i) parabolic

Δ(x0,y0)=0    (n1)2y2n=0    n=1ory=0.\Delta(x_0,y_0)=0\implies\\ (n-1)^2y^{2n}=0\implies\\ n=1 \quad or \quad y=0.

ii) hyperbolic

Δ(x0,y0)>0    (n1)2y2n>0    n1y0.\Delta(x_0,y_0)>0\implies\\ (n-1)^2y^{2n}>0\implies\\ n\neq1 \quad \quad y\neq 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment