(n−1)²uxx−y2nuyy=ny2n−1uyA(x,y)uxx+2B(x,y)uxy+C(x,y)uyy==F(x,y,u,ux,uy)
The type of second-order PDE at a point
(x0,y0) depends on the sign of the discriminant defined as
Δ(x0,y0)=B2−AC
In our case
A=(n−1)2,B=0,C=−y2nΔ=02−(n−1)2(−y2n)=(n−1)2y2n
i) parabolic
Δ(x0,y0)=0⟹(n−1)2y2n=0⟹n=1ory=0.
ii) hyperbolic
Δ(x0,y0)>0⟹(n−1)2y2n>0⟹n=1y=0.
Comments
Leave a comment