(1)
"-1+i =\\sqrt 2\\big(\\frac{-1}{\\sqrt 2}+i \\frac{1}{\\sqrt 2}\\big)=\\sqrt 2(\\cos \\frac{3\\pi}{4}+i\\sin \\frac{3\\pi}{4})"
Using de Moivre's formula, we have:
"(-1+i)^{16}=(\\sqrt 2)^{16} (\\cos (16\\times \\frac{3\\pi}{4})+i \\sin(16\\times \\frac{3\\pi}{4}))=256(\\cos 12\\pi+i\\sin 12\\pi)=256"
"(-1+i)^{16}=256" is real number
"\\frac{1}{(-1+i)^6}=(-1+i)^{-6}=(\\sqrt 2)^{-6} (\\cos (-6\\times \\frac{3\\pi}{4})+i \\sin(-6\\times \\frac{3\\pi}{4}))=1\/8(\\cos -4,5\\pi+i\\sin -4,5\\pi)=-i \/8"
"\\frac{1}{(-1+i)^6}=-i \/8" is purely imaginary
(2)
Let "z=\\cos \\alpha +i \\sin \\alpha"
Using de Moivre's formula, we have that "z^5=\\cos 5 \\alpha +i \\sin 5 \\alpha"
"z^5=(\\cos \\alpha +i \\sin \\alpha )^5=\\cos^5 \\alpha +5\\cos ^4 \\alpha (i \\sin \\alpha )+10\\cos ^3 \\alpha (i \\sin \\alpha )^2+10\\cos ^2 \\alpha (i \\sin \\alpha )^3+5\\cos \\alpha (i \\sin \\alpha )^4+(i \\sin \\alpha )^5=(\\cos ^5 \\alpha -10\\cos ^3 \\alpha \\sin^2 \\alpha +5\\cos \\alpha \\sin^4 \\alpha )+i (5\\cos^4 \\alpha \\sin \\alpha -10\\cos ^2 \\alpha \\sin^3 \\alpha +\\sin^5 \\alpha )"
"\\cos 5 \\alpha = \\cos ^5 \\alpha -10\\cos ^3 \\alpha \\sin^2 \\alpha +5\\cos \\alpha \\sin^4 \\alpha =\\cos \\alpha (\\cos^4 \\alpha -10\\cos^2 \\alpha \\sin^2 \\alpha +5\\sin^4 \\alpha )=\\cos \\alpha ((1-\\sin^2 \\alpha )^2-10(1-\\sin^2 \\alpha )\\sin^2 \\alpha +5\\sin^4 \\alpha )=\\cos \\alpha (16\\sin^4 \\alpha -12 \\sin^2 \\alpha +1)"
"\\frac{\\cos 5 \\alpha }{\\cos \\alpha }=16\\sin^4 \\alpha -12\\sin^2 \\alpha +1"
"\\sin 5 \\alpha =5\\cos^4\\alpha \\sin \\alpha -10\\cos^2 \\alpha \\sin^3 \\alpha +\\sin ^5 \\alpha =5(1-\\sin^2 \n \\alpha )^2\\sin \\alpha -10(1-\\sin^2 \\alpha )\\sin^3 \\alpha +\\sin ^5 \\alpha =16\\sin ^5 \\alpha -20\\sin^3\n \\alpha +5\\sin\\alpha"
"\\sin 5\\alpha= 16\\sin ^5 \\alpha -20\\sin^3\n \\alpha +5\\sin \\alpha"
Comments
Leave a comment