Question #117472
(1) Express -1+i in polar form. Hence show that (-1+i)^16 is real and that 1/(-1+i)^6 is purely imaginary, giving the value for each.
(2) Express sin5α and cos5α/cosα in terms of sinα
1
Expert's answer
2020-05-25T19:07:58-0400

(1)

1+i=2(12+i12)=2(cos3π4+isin3π4)-1+i =\sqrt 2\big(\frac{-1}{\sqrt 2}+i \frac{1}{\sqrt 2}\big)=\sqrt 2(\cos \frac{3\pi}{4}+i\sin \frac{3\pi}{4})

Using de Moivre's formula, we have:

(1+i)16=(2)16(cos(16×3π4)+isin(16×3π4))=256(cos12π+isin12π)=256(-1+i)^{16}=(\sqrt 2)^{16} (\cos (16\times \frac{3\pi}{4})+i \sin(16\times \frac{3\pi}{4}))=256(\cos 12\pi+i\sin 12\pi)=256

(1+i)16=256(-1+i)^{16}=256 is real number


1(1+i)6=(1+i)6=(2)6(cos(6×3π4)+isin(6×3π4))=1/8(cos4,5π+isin4,5π)=i/8\frac{1}{(-1+i)^6}=(-1+i)^{-6}=(\sqrt 2)^{-6} (\cos (-6\times \frac{3\pi}{4})+i \sin(-6\times \frac{3\pi}{4}))=1/8(\cos -4,5\pi+i\sin -4,5\pi)=-i /8

1(1+i)6=i/8\frac{1}{(-1+i)^6}=-i /8 is purely imaginary


(2)

Let z=cosα+isinαz=\cos \alpha +i \sin \alpha

Using de Moivre's formula, we have that z5=cos5α+isin5αz^5=\cos 5 \alpha +i \sin 5 \alpha

z5=(cosα+isinα)5=cos5α+5cos4α(isinα)+10cos3α(isinα)2+10cos2α(isinα)3+5cosα(isinα)4+(isinα)5=(cos5α10cos3αsin2α+5cosαsin4α)+i(5cos4αsinα10cos2αsin3α+sin5α)z^5=(\cos \alpha +i \sin \alpha )^5=\cos^5 \alpha +5\cos ^4 \alpha (i \sin \alpha )+10\cos ^3 \alpha (i \sin \alpha )^2+10\cos ^2 \alpha (i \sin \alpha )^3+5\cos \alpha (i \sin \alpha )^4+(i \sin \alpha )^5=(\cos ^5 \alpha -10\cos ^3 \alpha \sin^2 \alpha +5\cos \alpha \sin^4 \alpha )+i (5\cos^4 \alpha \sin \alpha -10\cos ^2 \alpha \sin^3 \alpha +\sin^5 \alpha )


cos5α=cos5α10cos3αsin2α+5cosαsin4α=cosα(cos4α10cos2αsin2α+5sin4α)=cosα((1sin2α)210(1sin2α)sin2α+5sin4α)=cosα(16sin4α12sin2α+1)\cos 5 \alpha = \cos ^5 \alpha -10\cos ^3 \alpha \sin^2 \alpha +5\cos \alpha \sin^4 \alpha =\cos \alpha (\cos^4 \alpha -10\cos^2 \alpha \sin^2 \alpha +5\sin^4 \alpha )=\cos \alpha ((1-\sin^2 \alpha )^2-10(1-\sin^2 \alpha )\sin^2 \alpha +5\sin^4 \alpha )=\cos \alpha (16\sin^4 \alpha -12 \sin^2 \alpha +1)

cos5αcosα=16sin4α12sin2α+1\frac{\cos 5 \alpha }{\cos \alpha }=16\sin^4 \alpha -12\sin^2 \alpha +1


sin5α=5cos4αsinα10cos2αsin3α+sin5α=5(1sin2α)2sinα10(1sin2α)sin3α+sin5α=16sin5α20sin3α+5sinα\sin 5 \alpha =5\cos^4\alpha \sin \alpha -10\cos^2 \alpha \sin^3 \alpha +\sin ^5 \alpha =5(1-\sin^2 \alpha )^2\sin \alpha -10(1-\sin^2 \alpha )\sin^3 \alpha +\sin ^5 \alpha =16\sin ^5 \alpha -20\sin^3 \alpha +5\sin\alpha

sin5α=16sin5α20sin3α+5sinα\sin 5\alpha= 16\sin ^5 \alpha -20\sin^3 \alpha +5\sin \alpha


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS