9. Find the moduli and principal arguments of w, z, wz and w/z, given that (a) w = 10i, z = 1 + i
3 + 2i, z = 1 − i, (c) w = , . 1 1 + i √
1
2020-05-25T20:32:18-0400
a)
w=10i,∣w∣=10,Arg(w)=2π
z=1+3i,∣z∣=(1)2+(3)2=2,Arg(z)=3π
∣wz∣=∣w∣∣z∣=10(2)=20,Arg(wz)=Arg(w)+Arg(z)=2π+3π=65π
∣zw∣=∣z∣∣w∣=210=5,Arg(zw)=Arg(w)−Arg(z)=2π−3π=6π
b)
w=1+i31=(1)2+(3)21−i3=21−i23,
∣w∣=(21)2+(23)2=1,Arg(w)=−3π
z=1−i,∣z∣=(1)2+(−1)2=2,Arg(z)=−4π
∣wz∣=∣w∣∣z∣=1(2)=2,Arg(wz)=Arg(w)+Arg(z)=−3π−4π=−127π
∣zw∣=∣z∣∣w∣=21=22,
Arg(zw)=Arg(w)−Arg(z)=−3π−(−4π)=−12π
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments