Question #117388
9. Find the moduli and principal arguments of w, z, wz and w/z, given that (a) w = 10i, z = 1 + i
3 + 2i, z = 1 − i, (c) w = , . 1 1 + i √
1
Expert's answer
2020-05-25T20:32:18-0400

a)


w=10i,w=10,w=10i, |w|=10,Arg(w)=π2Arg(w)={\pi \over 2}

z=1+3i,z=(1)2+(3)2=2,z=1+\sqrt{3}i, |z|=\sqrt{(1)^2+(\sqrt{3})^2}=2,Arg(z)=π3Arg(z)={\pi \over 3}

wz=wz=10(2)=20,|wz|=|w||z|=10(2)=20,Arg(wz)=Arg(w)+Arg(z)=π2+π3=5π6Arg(wz)=Arg(w)+Arg(z)={\pi \over 2}+{\pi \over 3}={5\pi \over6}

wz=wz=102=5,|{w \over z}|={|w|\over |z|}={10 \over 2}=5,Arg(wz)=Arg(w)Arg(z)=π2π3=π6Arg({w \over z})=Arg(w)-Arg(z)={\pi \over 2}-{\pi \over 3}={\pi \over6}

b)


w=11+i3=1i3(1)2+(3)2=12i32,w={1 \over 1+i\sqrt{3}}={1-i\sqrt{3} \over (1)^2+(\sqrt{3})^2}={1 \over 2}-i{\sqrt{3} \over 2},

w=(12)2+(32)2=1,Arg(w)=π3|w|=\sqrt{({1 \over 2})^2+({\sqrt{3} \over 2})^2}=1, Arg(w)=-{\pi\over 3}

z=1i,z=(1)2+(1)2=2,z=1-i, |z|=\sqrt{(1)^2+(-1)^2}=\sqrt{2},Arg(z)=π4Arg(z)=-{\pi \over 4}

wz=wz=1(2)=2,|wz|=|w||z|=1(\sqrt{2})=\sqrt{2},Arg(wz)=Arg(w)+Arg(z)=π3π4=7π12Arg(wz)=Arg(w)+Arg(z)=-{\pi \over 3}-{\pi \over 4}=-{7\pi \over12}

wz=wz=12=22,|{w \over z}|={|w|\over |z|}={1 \over \sqrt{2}}={\sqrt{2} \over 2},


Arg(wz)=Arg(w)Arg(z)=π3(π4)=π12Arg({w \over z})=Arg(w)-Arg(z)=-{\pi \over 3}-(-{\pi \over 4})=-{\pi \over12}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS