z 3 = 1 z^3=1 z 3 = 1 z 3 − 1 = 0 z^3-1=0 z 3 − 1 = 0 ( z − 1 ) ( z 2 + z + 1 ) = 0 (z-1)(z^2+z+1)=0 ( z − 1 ) ( z 2 + z + 1 ) = 0 z 2 + z + 1 = 0 z^2+ z+1=0 z 2 + z + 1 = 0
z = − 1 ± 1 2 − 4 ( 1 ) 2 2 = − 1 ± i 3 2 z={-1\pm\sqrt{1^2-4(1)^2}\over2}={-1\pm i\sqrt{3}\over2} z = 2 − 1 ± 1 2 − 4 ( 1 ) 2 = 2 − 1 ± i 3 Cube Root of Unity Value
w 1 = 1 , r e a l w_1=1,\ real w 1 = 1 , re a l
w 2 = − 1 − i 3 2 , c o m p l e x w_2={-1- i\sqrt{3}\over2}, complex w 2 = 2 − 1 − i 3 , co m pl e x
w 3 = − 1 + i 3 2 , c o m p l e x w_3={-1+ i\sqrt{3}\over2}, \ complex w 3 = 2 − 1 + i 3 , co m pl e x b)
z 3 − u 3 = 0 z^3-u^3=0 z 3 − u 3 = 0
z 3 − u 3 = ( z − u ) ( z 2 + u z + u 2 ) z^3-u^3=(z-u)(z^2+u z+u^2) z 3 − u 3 = ( z − u ) ( z 2 + u z + u 2 ) Then
( z − u ) ( z 2 + u z + u 2 ) = 0 (z-u)(z^2+u z+u^2)=0 ( z − u ) ( z 2 + u z + u 2 ) = 0 z 2 + u z + u 2 = 0 z^2+u z+u^2=0 z 2 + u z + u 2 = 0
z = − u ± u 2 − 4 u 2 2 = u ( − 1 ± i 3 2 ) z={-u\pm\sqrt{u^2-4u^2}\over2}=u({-1\pm i\sqrt{3}\over2}) z = 2 − u ± u 2 − 4 u 2 = u ( 2 − 1 ± i 3 )
z 1 = u w 1 = u ⋅ 1 = 1 ⋅ u + i ⋅ 0 , r e a l z_1=u w_1=u\cdot1=1\cdot u+i\cdot0, \ real z 1 = u w 1 = u ⋅ 1 = 1 ⋅ u + i ⋅ 0 , re a l
z 2 = u w 2 = u ⋅ − 1 − i 3 2 = − 1 2 u − i ⋅ u 3 2 , c o m p l e x z_2=u w_2=u\cdot{-1- i\sqrt{3}\over2}=-{1\over 2}u-i\cdot{u\sqrt{3}\over 2},\ complex z 2 = u w 2 = u ⋅ 2 − 1 − i 3 = − 2 1 u − i ⋅ 2 u 3 , co m pl e x
z 3 = u w 3 = u ⋅ − 1 + i 3 2 = − 1 2 u + i ⋅ u 3 2 , c o m p l e x z_3=u w_3=u\cdot{-1+ i\sqrt{3}\over2}=-{1\over 2}u+i\cdot{u\sqrt{3}\over 2},\ complex z 3 = u w 3 = u ⋅ 2 − 1 + i 3 = − 2 1 u + i ⋅ 2 u 3 , co m pl e x
Comments