Let z=x+iy, then ∣z+3i∣2=∣x+(y+3)i∣2=x2+(y+3)2, ∣z+5−2i∣2=∣(x+5)+(y−2)i∣2=(x+5)2+(y−2)2, ∣z−4i∣2=x2+(y−4)2, ∣z+2i∣2=x2+(y+2)2, so we obtain the system {x2+(y+3)2=(x+5)2+(y−2)2x2+(y−4)2=x2+(y+2)2
From the second equation we obtain (y−4)2=(y+2)2, that is y2−8y+16=y2+4y+4, so y=1.
Substitute y=1 to the first equation. We obtain x2+16=(x+5)2+1, that is x2+16=x2+10x+26, so x=−1.
Answer: z=−1+i
Comments