"z=x+iy"
Hence
"|z+3i|=\\sqrt{x^2+((y+3)^2)};|z+5-2i|=\\sqrt{(x+5)^2+((y-2)^2)}"
"\\sqrt{x^2+((y+3)^2)}=\\sqrt{(x+5)^2+((y-2)^2)}"
"x^2+(y+3)^2=(x+5)^2+(y-2)^2"
From the other equality we obtain
"|z-4i|=\\sqrt{x^2+(y-4)^2};|z+2i|=\\sqrt{x^2+(y+2)^2}"
"x^2+(y-4)^2=x^2+(y+2)^2"
Therefore
"(y-4)^2=(y+2)^2"
"-8y+16=4y+4"
"12y=12"
"y=1"
"x^2+16=(x+5)^2+1"
"10x+26=16"
"x=-1"
"z=-1+i"
Comments
Leave a comment