Answer to Question #117200 in Complex Analysis for Asubonteng Isaac Adjei

Question #117200
Determine the complex number z which satisfies the equations |z + 3i| = |z + 5 − 2i| and |z − 4i| = |z + 2i| simultaneously
1
Expert's answer
2020-05-20T17:03:56-0400

z=x+iyz=x+iy

Hence

z+3i=x2+((y+3)2);z+52i=(x+5)2+((y2)2)|z+3i|=\sqrt{x^2+((y+3)^2)};|z+5-2i|=\sqrt{(x+5)^2+((y-2)^2)}

x2+((y+3)2)=(x+5)2+((y2)2)\sqrt{x^2+((y+3)^2)}=\sqrt{(x+5)^2+((y-2)^2)}

x2+(y+3)2=(x+5)2+(y2)2x^2+(y+3)^2=(x+5)^2+(y-2)^2

From the other equality we obtain

z4i=x2+(y4)2;z+2i=x2+(y+2)2|z-4i|=\sqrt{x^2+(y-4)^2};|z+2i|=\sqrt{x^2+(y+2)^2}

x2+(y4)2=x2+(y+2)2x^2+(y-4)^2=x^2+(y+2)^2

Therefore

(y4)2=(y+2)2(y-4)^2=(y+2)^2

8y+16=4y+4-8y+16=4y+4

12y=1212y=12

y=1y=1

x2+16=(x+5)2+1x^2+16=(x+5)^2+1

10x+26=1610x+26=16

x=1x=-1

z=1+iz=-1+i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment