Answer to Question #117190 in Complex Analysis for Popcy

Question #117190
Given that 2−3i is a root of the equation z^3+pz^2+qz+13 = 0, find the other two roots and the values of the real constants p and q.
1
Expert's answer
2020-05-20T16:47:05-0400

(a+b)3=a3+3a2b+3ab2+b3=>(23i)3=836i54+27i=469i(23i)2=412i9=512i(a+b)^3=a^3+3a^2b+3ab^2+b^3=>(2-3i)^3=8-36i-54+27i=-46-9i\newline (2-3i)^2=4-12i-9=-5-12i

So we have:

469i+p(512i)+q(23i)+13=0(2q5p)+(12p3q)i=339i=>{2q5p=3312p+3q=9{2q5p=33q=34p{68p5p=33q=34p{p=3q=9-46-9i+p(-5-12i)+q(2-3i)+13=0\newline (2q-5p)+(-12p-3q)i=33-9i=>\newline \begin{cases} 2q-5p=33\\ 12p+3q=-9 \end{cases}\newline \begin{cases} 2q-5p=33\\ q=-3-4p \end{cases}\newline \begin{cases} -6-8p-5p=33\\ q=-3-4p \end{cases}\newline \begin{cases} p=-3\\ q=9\\ \end{cases}\newline

It means that:

z33z2+9z+13=0z^3-3z^2+9z+13=0

z33z2+9z+13z2+3i=z2+(13i)z+(23i)\dfrac{z^3-3z^2+9z+13}{z-2+3i}=z^2+(-1-3i)z+(-2-3i)

z2+(13i)z+(23i)=0D=(13i)24(23i)=1+6i9+8+12i=18iD=32iifi=12+12i,thenD=3+3iifi=1212i,thenD=33iD=3+3iz2=1+3i+3+3i23i=2z3=1+3i33i23i=22+3iD=33iz2=1+3i33i23i=22+3iz3=1+3i+3+3i23i=2z^2+(-1-3i)z+(-2-3i)=0\newline D=(-1-3i)^2-4(-2-3i)=1+6i-9+8+12i=18i\newline \sqrt{D}=3\sqrt{2i}\newline if \sqrt{i}=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}i, thenD=3+3i\newline if \sqrt{i}=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}i, thenD=-3-3i\newline D=3+3i\newline z_2=\dfrac{1+3i+3+3i}{-2-3i}=-2\newline z_3=\dfrac{1+3i-3-3i}{-2-3i}=\dfrac{2}{2+3i}\newline D=-3-3i\newline z_2=\dfrac{1+3i-3-3i}{-2-3i}=\dfrac{2}{2+3i}\newline z_3=\dfrac{1+3i+3+3i}{-2-3i}=-2\newline


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment