(a+b)3=a3+3a2b+3ab2+b3=>(2−3i)3=8−36i−54+27i=−46−9i(2−3i)2=4−12i−9=−5−12i
So we have:
−46−9i+p(−5−12i)+q(2−3i)+13=0(2q−5p)+(−12p−3q)i=33−9i=>{2q−5p=3312p+3q=−9{2q−5p=33q=−3−4p{−6−8p−5p=33q=−3−4p{p=−3q=9
It means that:
z3−3z2+9z+13=0
z−2+3iz3−3z2+9z+13=z2+(−1−3i)z+(−2−3i)
z2+(−1−3i)z+(−2−3i)=0D=(−1−3i)2−4(−2−3i)=1+6i−9+8+12i=18iD=32iifi=21+21i,thenD=3+3iifi=−21−21i,thenD=−3−3iD=3+3iz2=−2−3i1+3i+3+3i=−2z3=−2−3i1+3i−3−3i=2+3i2D=−3−3iz2=−2−3i1+3i−3−3i=2+3i2z3=−2−3i1+3i+3+3i=−2
Comments
Leave a comment