a) ( c o s ( π / 4 ) + i s i n ( π / 4 ) ) ( c o s ( 3 π / 4 ) + i s i n ( 3 π / 4 ) ) = (cos (π/4) + i sin (π/4))(cos (3π/4) + i sin (3π/4))= ( cos ( π /4 ) + i s in ( π /4 )) ( cos ( 3 π /4 ) + i s in ( 3 π /4 )) =
= ( c o s ( π / 4 ) + i s i n ( π / 4 ) ) ( − c o s ( π / 4 ) + i s i n ( π / 4 ) ) = =(cos (π/4) + i sin (π/4))(-cos (π/4) + i sin (π/4))= = ( cos ( π /4 ) + i s in ( π /4 )) ( − cos ( π /4 ) + i s in ( π /4 )) =
= − s i n 2 ( π / 4 ) − c o s 2 ( π / 4 ) = − 1 =-sin^2(\pi/4)-cos^2(\pi/4)=-1 = − s i n 2 ( π /4 ) − co s 2 ( π /4 ) = − 1
b) ( c o s ( π / 4 ) + i s i n ( π / 4 ) ) 2 ( c o s ( π / 6 ) + i s i n ( π / 6 ) ) = (cos (π/4) + i sin (π/4))^2 (cos (π/6) + i sin (π/6))= ( cos ( π /4 ) + i s in ( π /4 ) ) 2 ( cos ( π /6 ) + i s in ( π /6 )) =
= ( c o s ( 2 π / 4 ) + i s i n ( 2 π / 4 ) ) ( c o s ( π / 6 ) + i s i n ( π / 6 ) ) = =(cos (2π/4) + i sin (2π/4)) (cos (π/6) + i sin (π/6))= = ( cos ( 2 π /4 ) + i s in ( 2 π /4 )) ( cos ( π /6 ) + i s in ( π /6 )) =
= i ( c o s ( π / 6 ) + i s i n ( π / 6 ) ) = − s i n ( π / 6 ) + i c o s ( π / 6 ) = = i (cos (π/6) + i sin (π/6))=-sin (π/6)+icos (π/6)= = i ( cos ( π /6 ) + i s in ( π /6 )) = − s in ( π /6 ) + i cos ( π /6 ) =
= − 1 / 2 + i 3 / 2 =-1/2+i\sqrt{3}/2 = − 1/2 + i 3 /2
Comments