"p=z+{1\\over z}=1+i\\sqrt{2}+{1\\over 1+i\\sqrt{2}}=1+i\\sqrt{2}+{1-i\\sqrt{2}\\over 1^2+(\\sqrt{2})^2}="
"={3+i3\\sqrt{2}+1-i\\sqrt{2}\\over 3}={4+i2\\sqrt{2}\\over 3}"
"q=z-{1\\over z}=1+i\\sqrt{2}-{1\\over 1+i\\sqrt{2}}=1+i\\sqrt{2}-{1-i\\sqrt{2}\\over 1^2+(\\sqrt{2})^2}="
"={3+i3\\sqrt{2}-1+i\\sqrt{2}\\over 3}={2+i4\\sqrt{2}\\over 3}"
"P(\\dfrac{4}{3},\\dfrac{2\\sqrt{2}}{3}), Q(\\dfrac{2}{3},\\dfrac{4\\sqrt{2}}{3}),O(0,0)"
"x_M=\\dfrac{x_P+x_Q}{2}=\\dfrac{\\dfrac{4}{3}+\\dfrac{2}{3}}{2}=1,"
"y_M=\\dfrac{y_P+y_Q}{2}=\\dfrac{\\dfrac{2\\sqrt{2}}{3}+\\dfrac{4\\sqrt{2}}{3}}{2}=\\sqrt{2}"
"M(1, \\sqrt{2})"
"x_G=\\dfrac{x_0+2x_M}{1+2}=\\dfrac{0+2\\cdot1}{3}=\\dfrac{2}{3},"
"y_G=\\dfrac{y_0+2y_M}{1+2}=\\dfrac{0+2\\cdot\\sqrt{2}}{3}=\\dfrac{2\\sqrt{2}}{3},"
"G(\\dfrac{2}{3},\\dfrac{2\\sqrt{2}}{3})"
"\\overline{GQ}=(x_Q-x_G,y_Q-y_G)=(0, {2\\sqrt{2}\\over 3})"
"|\\overline{GP}|={2\\over 3}\\not=0,|\\overline{GQ}|={2\\sqrt{2}\\over 3}\\not=0"
Hence angle PGQ is a right angle.
Comments
Leave a comment