Answer to Question #117384 in Complex Analysis for Amoah Henry

Question #117384
Given that z = 1 + i √ 2, express in the form a + ib each of the complex numbers
p = z + 1/z, q = z − 1/z. In an Argand diagram, P and Q are the points which represent p and q respectively, O is the orgin, M is the midpoint of PQ and G is the point on OM such that OG =
2 3
OM. Prove that angle PGQ is a right angle.
1
Expert's answer
2020-05-21T17:35:37-0400
"z=1+i\\sqrt{2}"

"p=z+{1\\over z}=1+i\\sqrt{2}+{1\\over 1+i\\sqrt{2}}=1+i\\sqrt{2}+{1-i\\sqrt{2}\\over 1^2+(\\sqrt{2})^2}="

"={3+i3\\sqrt{2}+1-i\\sqrt{2}\\over 3}={4+i2\\sqrt{2}\\over 3}"

"q=z-{1\\over z}=1+i\\sqrt{2}-{1\\over 1+i\\sqrt{2}}=1+i\\sqrt{2}-{1-i\\sqrt{2}\\over 1^2+(\\sqrt{2})^2}="

"={3+i3\\sqrt{2}-1+i\\sqrt{2}\\over 3}={2+i4\\sqrt{2}\\over 3}"

"P(\\dfrac{4}{3},\\dfrac{2\\sqrt{2}}{3}), Q(\\dfrac{2}{3},\\dfrac{4\\sqrt{2}}{3}),O(0,0)"


"x_M=\\dfrac{x_P+x_Q}{2}=\\dfrac{\\dfrac{4}{3}+\\dfrac{2}{3}}{2}=1,"


"y_M=\\dfrac{y_P+y_Q}{2}=\\dfrac{\\dfrac{2\\sqrt{2}}{3}+\\dfrac{4\\sqrt{2}}{3}}{2}=\\sqrt{2}"


"M(1, \\sqrt{2})"


"\\lambda={OG\\over GM}=2"

"x_G=\\dfrac{x_0+2x_M}{1+2}=\\dfrac{0+2\\cdot1}{3}=\\dfrac{2}{3},"


"y_G=\\dfrac{y_0+2y_M}{1+2}=\\dfrac{0+2\\cdot\\sqrt{2}}{3}=\\dfrac{2\\sqrt{2}}{3},"


"G(\\dfrac{2}{3},\\dfrac{2\\sqrt{2}}{3})"


"\\overline{GP}=(x_P-x_G,y_P-y_G)=({2\\over 3}, 0)"

"\\overline{GQ}=(x_Q-x_G,y_Q-y_G)=(0, {2\\sqrt{2}\\over 3})"

"|\\overline{GP}|={2\\over 3}\\not=0,|\\overline{GQ}|={2\\sqrt{2}\\over 3}\\not=0"


"\\overline{GQ}\\cdot\\overline{GP}=0=>GQ\\perp GP"

Hence angle PGQ is a right angle.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS