Answer to Question #117390 in Complex Analysis for Amoah Henry

Question #117390
Express −1+i in polar form. Hence show that (−1+i)16 is real and that 1/(−1+i)6 is purely imaginary, giving the value for each.
1
Expert's answer
2020-05-25T20:53:20-0400

1+i=2(cos3π4+isin3π4)-1+i=\sqrt{2}(\cos \frac{3\pi}{4}+i\sin \frac{3\pi}{4})

(1+i)16=256(cos48π4+isin48π4)=256(cos12π+isin12π)=256.(-1+i)^{16}=256(\cos \frac{48\pi}{4}+i\sin \frac{48\pi}{4})=256(\cos 12\pi+i\sin 12\pi)=256.

1(1+i)6=(1+i)6=18(cos18π4+isin18π4)=18(cos9π2+isin9π2)=18i\frac{1}{(-1+i)^6}=(-1+i)^{-6}=\frac{1}{8}(\cos \frac{18\pi}{4}+i\sin \frac{18\pi}{4})=\frac{1}{8}(\cos \frac{9\pi}{2}+i\sin \frac{9\pi}{2})=\frac{1}{8}i.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment