Question #117389
Use De Moivre’s theorem to simplify the following (a) (cos π/5+i sin π/5)10, (b) (cos π/9+i sin π/9)−3, (c) {cos(−π/6) + i sin(−π/6)}−4,
1
Expert's answer
2020-05-25T20:29:17-0400

De Moivre’s Theorem:

(\cos \theta +i \sin \theta )^n=\cos n\theta +i \sin n\theta, \ \ for all integers nn .


a) (cosπ/5+isinπ/5)10=cos2π+isin2π=1+i×0=1(\cosπ/5+i\sin⁡π /5)^{10}=\cos 2\pi +i \sin 2\pi=1+i \times 0=1

b) (cosπ/9+isinπ/9)3=cos(π/3)+isin(π/3)=1/2+i(3/2)(\cos⁡π/9+i\sin⁡π/9)^{-3}= \cos ⁡ ( − π / 3 )+i \sin ⁡ ( − π / 3 ) = 1/2+i (-\sqrt 3 /2)

c) (cos(π/6)+isin(π/6))4=cos2π/3+isin2π/3=1/2+i3/2(\cos(−π/6)+i\sin(−π/6)) ^{−4}=\cos 2\pi /3+i \sin 2\pi/3=-1/2+i \sqrt 3 /2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS