De Moivre’s Theorem:
(\cos \theta +i \sin \theta )^n=\cos n\theta +i \sin n\theta, \ \ for all integers n .
a) (cosπ/5+isinπ/5)10=cos2π+isin2π=1+i×0=1
b) (cosπ/9+isinπ/9)−3=cos(−π/3)+isin(−π/3)=1/2+i(−3/2)
c) (cos(−π/6)+isin(−π/6))−4=cos2π/3+isin2π/3=−1/2+i3/2
Comments