De Moivre’s Theorem:
(\cos \theta +i \sin \theta )^n=\cos n\theta +i \sin n\theta, \ \ for all integers nnn .
a) (cosπ/5+isinπ/5)10=cos2π+isin2π=1+i×0=1(\cosπ/5+i\sinπ /5)^{10}=\cos 2\pi +i \sin 2\pi=1+i \times 0=1(cosπ/5+isinπ/5)10=cos2π+isin2π=1+i×0=1
b) (cosπ/9+isinπ/9)−3=cos(−π/3)+isin(−π/3)=1/2+i(−3/2)(\cosπ/9+i\sinπ/9)^{-3}= \cos ( − π / 3 )+i \sin ( − π / 3 ) = 1/2+i (-\sqrt 3 /2)(cosπ/9+isinπ/9)−3=cos(−π/3)+isin(−π/3)=1/2+i(−3/2)
c) (cos(−π/6)+isin(−π/6))−4=cos2π/3+isin2π/3=−1/2+i3/2(\cos(−π/6)+i\sin(−π/6)) ^{−4}=\cos 2\pi /3+i \sin 2\pi/3=-1/2+i \sqrt 3 /2(cos(−π/6)+isin(−π/6))−4=cos2π/3+isin2π/3=−1/2+i3/2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments