Question #117471
Find the module and the principal argument of W, z, wz and w/z, given that
(a) w=10i, z=1+i√3
(b) w= -2√3 +2i, z=1-i
1
Expert's answer
2020-05-25T21:05:31-0400

(a) W=10,argW=π/2,Z=1+3=2,argZ=π/3|W|=10,argW=\pi/2, |Z|=\sqrt{1+3}=2, argZ=\pi/3

WZ=WZ=20,arg(WZ)=argW+argZ=5π/6|WZ|=|W||Z|=20, arg(WZ)=argW+argZ=5\pi/6

W/Z=W/Z=5,arg(W/Z)=argWargZ=π/6|W/Z|=|W|/|Z|=5, arg(W/Z)=argW-argZ=\pi/6

(b) W=12+4=4,argW=5π/6,Z=1+1=2|W|=\sqrt{12+4}=4, argW=5\pi/6, |Z|=\sqrt{1+1}=\sqrt2

argZ=7π/4argZ=7\pi/4

WZ=42,arg(WZ)=argW+argZ=7π/12|WZ|=4\sqrt2, arg(WZ)=argW+argZ=7\pi/12

W/Z=4/2,arg(W/Z)=argWargZ=5π/6|W/Z|=4/\sqrt2, arg(W/Z)=argW-argZ=5\pi/6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS