Answer to Question #117392 in Complex Analysis for Amoah Henry

Question #117392
Express sin 5θ and cos 5θ/ cos θ in terms of sin θ
1
Expert's answer
2020-05-25T20:56:15-0400

"\\sin(5\\theta) = \\sin(2\\theta+3\\theta)=\\sin(2\\theta)\\cos(3\\theta)+\\sin(3\\theta)cos(2\\theta)\\newline\n\\sin(3\\theta) = 3\\sin(\\theta)\\cos^2(\\theta) \u2013 \\sin^3(\\theta)\\newline\n\\cos(3\\theta) = \\cos^3(\\theta) \u2013 3\\cos(\\theta)\\sin^2(\\theta)\\newline\n\\sin(2\\theta) = 2\\sin(\\theta)\\cos(\\theta)\\newline\n\\cos(2\\theta)=1-\\sin^2(\\theta)\\newline\n\\sin(5\\theta)= 2\\sin(\\theta)\\cos(\\theta) \\times (\\cos^3(\\theta) \u2013 3\\cos(\\theta)\\sin^2(\\theta)) +\\newline\n\n+(3\\sin(\\theta)\\cos^2(\\theta) \u2013 \\sin^3(\\theta))\\times(1-\\sin^2(\\theta))=\\newline\n\n=2\\sin(\\theta)\\cos^4(\\theta)-6\\sin^3(\\theta)\\cos^2(\\theta)+3\\sin(\\theta)\\cos^2(\\theta)-\\newline\n\n-3\\sin^3(\\theta)cos^2(\\theta)-\\sin^3(\\theta)+\\sin^5(\\theta)=\\newline\n\n=2\\sin(\\theta)(1-\\sin^2(\\theta))^2-6\\sin^3(\\theta)(1-\\sin^2(\\theta))+3\\sin(\\theta)(1-\\sin^2(\\theta))-\\newline\n\n-3\\sin^3(\\theta)(1-\\sin^2(\\theta))-\\sin^3(\\theta)+\\sin^5(\\theta)=\\newline\n\n=2\\sin(\\theta)-4\\sin^3(\\theta)+2\\sin^5(\\theta)-6\\sin^3(\\theta)+6\\sin^5(\\theta)+3\\sin(\\theta)-3\\sin^3(\\theta)-\\newline\n\n-3\\sin^3(\\theta)+3\\sin^5(\\theta)-\\sin^3(\\theta)+\\sin^5(\\theta)=\\newline\n\n=13\\sin^5(\\theta)-17\\sin^3(\\theta)+5\\sin(\\theta)\\newline"


"\\cos(5\\theta)=\\cos(3\\theta+2\\theta)=\\cos(3\\theta)\\cos(2\\theta)-\\sin(3\\theta)\\sin(2\\theta)"


From the previous paragraph:

"\\sin(3\\theta) = 3\\sin(\\theta)\\cos^2(\\theta) \u2013 \\sin^3(\\theta)\\newline\n\n\\cos(3\\theta) = \\cos^3(\\theta) \u2013 3\\cos(\\theta)\\sin^2(\\theta)\\newline\n\n\\sin(2\\theta) = 2\\sin(\\theta)\\cos(\\theta)\\newline\n\n\\cos(2\\theta)=1-\\sin^2(\\theta)\\newline\nSo:\\newline\n\\cos(5\\theta)= (\\cos^3(\\theta) \u2013 3\\cos(\\theta)\\sin^2(\\theta))(1-\\sin^2(\\theta))-\\newline\n- (3\\sin(\\theta)\\cos^2(\\theta) \u2013 \\sin^3(\\theta))\\times2\\sin(\\theta)\\cos(\\theta))=\\newline\n=\\cos(\\theta)(\\cos^2(\\theta) \u2013 3\\sin^2(\\theta))(1-\\sin^2(\\theta))-\\newline\n-2\\sin(\\theta)\\cos(\\theta)(3\\sin(\\theta)\\cos^2(\\theta) \u2013 \\sin^3(\\theta))=\\newline\n=\\cos(\\theta)((1-4\\sin^2(\\theta))(1-\\sin^2(\\theta))-2\\sin(\\theta)(3\\sin(\\theta)-4\\sin^3(\\theta))=\\newline\n=\\cos(\\theta)(1-5\\sin^2(\\theta)+4\\sin^4(\\theta)-6\\sin^2(\\theta)+8\\sin^4(\\theta))=\\newline\n=\\cos(\\theta)(1-11\\sin^2(\\theta)+12\\sin^4(\\theta))=>\\newline\n\\dfrac{\\cos(5\\theta)}{\\cos(\\theta)}=12\\sin^4(\\theta)-11\\sin^2(\\theta)+1"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS