Calculus Answers

Questions: 7 610

Answers by our Experts: 7 078

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Search & Filtering

find the total length of the curve r=4(1-sin theta) form theta = 90 degree to theta= 270 degree


compute the surface area generated when the first quadrant portion of the curve x^2-4y=8 from x1=0 to x2= 2 is revolved about the y-axis




2. ∫ 12π‘₯Β² √4π‘₯Β³ + 7𝑑π‘₯




∫ (π‘₯2Β²+ 5)Β³2π‘₯𝑑π‘₯



1. ∫ (π‘₯Β²+5)Β³ 2π‘₯𝑑π‘₯



2. ∫ 12π‘₯Β² √4π‘₯Β³ + 7𝑑π‘₯



3. ∫ √2π‘₯Β³+7 π‘₯²𝑑π‘₯



4. ∫ 5π‘₯√1 + 4π‘₯Β²



5. ∫(3π‘₯Β² βˆ’ 4π‘₯ + 2)Β² (3π‘₯ βˆ’ 2)𝑑π‘₯

Find the volume of the solid by revolving the astroid xβ…”+yβ…”=aβ…” along x axis

Find the perimeter of loop of the curve 3ayΒ²=xΒ²(a-x)

Find the derivatives of each of the following functions:

a. 𝑦 = 5π‘₯2+7π‘₯βˆ’8

b. 𝑓(π‘₯) = 7/π‘₯4

c. 𝑦 = 15/√π‘₯

d. 𝑓(π‘₯) = 2π‘₯7/2βˆ’π‘₯-1/3

e. 𝑦 = (4π‘₯2βˆ’7π‘₯)/π‘₯

f. 𝑓(π‘₯) = 7π‘₯3/√π‘₯



Differentiate with respect to π‘₯

a. (7π‘₯ – 4 )3

b. √(6π‘₯+4)


The curve 𝑦=βˆ’π‘₯3+3π‘₯2+6π‘₯βˆ’8 cuts the π‘₯-axis at π‘₯=βˆ’2,π‘₯=1 and π‘₯=4.

a. Sketch the curve, showing clearly the intersection with the coordinate axes.

b. Differentiate 𝑦=βˆ’π‘₯3+3π‘₯2+6π‘₯βˆ’8

c. Show that the tangents to the curve at π‘₯=βˆ’2 and π‘₯=4 are parallel.


LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS