find the total length of the curve r=4(1-sin theta) form theta = 90 degree to theta= 270 degree
We can find the length of the curve by the next formula:
"l=\\int_{ \\theta_1}^{ \\theta_2} \\sqrt{(r(\\theta))^2+r '(\\theta))^2}d \\theta."
"r(\\theta)=4(1-sin\\theta),"
"r'(\\theta)=-4cos\\theta,"
so we have:
"l=\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{(4(1-sin\\theta))^2+(-4cos\\theta)^2}d \\theta="
"=\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{16-32sin\\theta+16sin^2\\theta+16cos^2\\theta}d \\theta="
"=\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{16-32sin\\theta+16}d \\theta="
"=\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{32(1-sin\\theta)}d \\theta="
"=4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{1-sin\\theta}d \\theta="
"=4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{(1-sin\\theta) \\frac{1+sin\\theta}{1+sin\\theta}}d \\theta="
"=4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{ \\frac{1-sin^2\\theta}{1+sin\\theta}}d \\theta="
"=4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\sqrt{ \\frac{cos^2\\theta}{1+sin\\theta}}d \\theta="
"=4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\frac{-cos\\theta}{\\sqrt{{1+sin\\theta}}}d \\theta="
"=-4\\sqrt{2}\\int_{ 90\\degree}^{ 270\\degree} \\frac{cos\\theta}{\\sqrt{{1+sin\\theta}}}d \\theta."
Substitution: "1+sin\\theta=u," "du=cos\\theta d\\theta,"
"1+sin(90\\degree)=1+1=2,"
"1+sin(270\\degree)=1+(-1)=0."
We have:
"l=-4\\sqrt{2}\\int_{ 2}^{0} \\frac{du}{\\sqrt{u}}=4\\sqrt{2} \\cdot 2\\sqrt{u}|_0^2=8\\sqrt{2}(\\sqrt{2}-0)=16."
Answer: 16.
Comments
Leave a comment