Answer to Question #346765 in Calculus for edizon

Question #346765

find the total length of the curve r=4(1-sin theta) form theta = 90 degree to theta= 270 degree


1
Expert's answer
2022-06-02T05:04:59-0400


We can find the length of the curve by the next formula:

l=θ1θ2(r(θ))2+r(θ))2dθ.l=\int_{ \theta_1}^{ \theta_2} \sqrt{(r(\theta))^2+r '(\theta))^2}d \theta.

r(θ)=4(1sinθ),r(\theta)=4(1-sin\theta),

r(θ)=4cosθ,r'(\theta)=-4cos\theta,

so we have:

l=90°270°(4(1sinθ))2+(4cosθ)2dθ=l=\int_{ 90\degree}^{ 270\degree} \sqrt{(4(1-sin\theta))^2+(-4cos\theta)^2}d \theta=


=90°270°1632sinθ+16sin2θ+16cos2θdθ==\int_{ 90\degree}^{ 270\degree} \sqrt{16-32sin\theta+16sin^2\theta+16cos^2\theta}d \theta=


=90°270°1632sinθ+16dθ==\int_{ 90\degree}^{ 270\degree} \sqrt{16-32sin\theta+16}d \theta=


=90°270°32(1sinθ)dθ==\int_{ 90\degree}^{ 270\degree} \sqrt{32(1-sin\theta)}d \theta=


=4290°270°1sinθdθ==4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \sqrt{1-sin\theta}d \theta=


=4290°270°(1sinθ)1+sinθ1+sinθdθ==4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \sqrt{(1-sin\theta) \frac{1+sin\theta}{1+sin\theta}}d \theta=


=4290°270°1sin2θ1+sinθdθ==4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \sqrt{ \frac{1-sin^2\theta}{1+sin\theta}}d \theta=


=4290°270°cos2θ1+sinθdθ==4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \sqrt{ \frac{cos^2\theta}{1+sin\theta}}d \theta=


=4290°270°cosθ1+sinθdθ==4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \frac{-cos\theta}{\sqrt{{1+sin\theta}}}d \theta=


=4290°270°cosθ1+sinθdθ.=-4\sqrt{2}\int_{ 90\degree}^{ 270\degree} \frac{cos\theta}{\sqrt{{1+sin\theta}}}d \theta.


Substitution: 1+sinθ=u,1+sin\theta=u, du=cosθdθ,du=cos\theta d\theta,

1+sin(90°)=1+1=2,1+sin(90\degree)=1+1=2,

1+sin(270°)=1+(1)=0.1+sin(270\degree)=1+(-1)=0.


We have:

l=4220duu=422u02=82(20)=16.l=-4\sqrt{2}\int_{ 2}^{0} \frac{du}{\sqrt{u}}=4\sqrt{2} \cdot 2\sqrt{u}|_0^2=8\sqrt{2}(\sqrt{2}-0)=16.


Answer: 16.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment