We can find the length of the curve by the next formula:
l=∫θ1θ2(r(θ))2+r′(θ))2dθ.
r(θ)=4(1−sinθ),
r′(θ)=−4cosθ,
so we have:
l=∫90°270°(4(1−sinθ))2+(−4cosθ)2dθ=
=∫90°270°16−32sinθ+16sin2θ+16cos2θdθ=
=∫90°270°16−32sinθ+16dθ=
=∫90°270°32(1−sinθ)dθ=
=42∫90°270°1−sinθdθ=
=42∫90°270°(1−sinθ)1+sinθ1+sinθdθ=
=42∫90°270°1+sinθ1−sin2θdθ=
=42∫90°270°1+sinθcos2θdθ=
=42∫90°270°1+sinθ−cosθdθ=
=−42∫90°270°1+sinθcosθdθ.
Substitution: 1+sinθ=u, du=cosθdθ,
1+sin(90°)=1+1=2,
1+sin(270°)=1+(−1)=0.
We have:
l=−42∫20udu=42⋅2u∣02=82(2−0)=16.
Answer: 16.
Comments
Leave a comment