Answer to Question #346756 in Calculus for edz

Question #346756

compute the surface area generated when the first quadrant portion of the curve x^2-4y=8 from x1=0 to x2= 2 is revolved about the y-axis


1
Expert's answer
2022-06-03T13:00:00-0400
y=x242y=\dfrac{x^2}{4}-2

y=x2y'=\dfrac{x}{2}

S=2π02x(y)2+1dxS=2\pi\displaystyle\int_{0}^{2}x\sqrt{(y')^2+1}dx

=2π02x(x2)2+1dx=2\pi\displaystyle\int_{0}^{2}x\sqrt{(\dfrac{x}{2})^2+1}dx

xx24+1dx\int x\sqrt{\dfrac{x^2}{4}+1}dx

u=x24+1,du=x2dxu=\dfrac{x^2}{4}+1, du=\dfrac{x}{2}dx

xx24+1dx=2udu\int x\sqrt{\dfrac{x^2}{4}+1}dx=\int 2\sqrt{u}du

=2(23)u3/2+C=43(x24+1)3/2+C=2(\dfrac{2}{3})u^{3/2}+C=\dfrac{4}{3}(\dfrac{x^2}{4}+1)^{3/2}+C


S=2π02x(y)2+1dxS=2\pi\displaystyle\int_{0}^{2}x\sqrt{(y')^2+1}dx

=2π02x(x2)2+1dx=2\pi\displaystyle\int_{0}^{2}x\sqrt{(\dfrac{x}{2})^2+1}dx

=2π[43(x24+1)3/2]20=2\pi[\dfrac{4}{3}(\dfrac{x^2}{4}+1)^{3/2}]\begin{matrix} 2\\ 0 \end{matrix}

=8π3(221)(units2)=\dfrac{8\pi}{3}(2\sqrt{2}-1)({units}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment