compute the surface area generated when the first quadrant portion of the curve x^2-4y=8 from x1=0 to x2= 2 is revolved about the y-axis
"y'=\\dfrac{x}{2}"
"S=2\\pi\\displaystyle\\int_{0}^{2}x\\sqrt{(y')^2+1}dx"
"=2\\pi\\displaystyle\\int_{0}^{2}x\\sqrt{(\\dfrac{x}{2})^2+1}dx"
"\\int x\\sqrt{\\dfrac{x^2}{4}+1}dx"
"u=\\dfrac{x^2}{4}+1, du=\\dfrac{x}{2}dx"
"\\int x\\sqrt{\\dfrac{x^2}{4}+1}dx=\\int 2\\sqrt{u}du"
"=2(\\dfrac{2}{3})u^{3\/2}+C=\\dfrac{4}{3}(\\dfrac{x^2}{4}+1)^{3\/2}+C"
"=2\\pi\\displaystyle\\int_{0}^{2}x\\sqrt{(\\dfrac{x}{2})^2+1}dx"
"=2\\pi[\\dfrac{4}{3}(\\dfrac{x^2}{4}+1)^{3\/2}]\\begin{matrix}\n 2\\\\\n 0\n\\end{matrix}"
"=\\dfrac{8\\pi}{3}(2\\sqrt{2}-1)({units}^2)"
Comments
Leave a comment