Answer to Question #346625 in Calculus for Main

Question #346625

1. ∫ (𝑥²+5)³ 2𝑥𝑑𝑥



2. ∫ 12𝑥² √4𝑥³ + 7𝑑𝑥



3. ∫ √2𝑥³+7 𝑥²𝑑𝑥



4. ∫ 5𝑥√1 + 4𝑥²



5. ∫(3𝑥² − 4𝑥 + 2)² (3𝑥 − 2)𝑑𝑥

1
Expert's answer
2022-06-01T02:59:48-0400

1.


(x2+5)32xdx\int(x^2+5)^32xdx

u=x2+5,du=2xdxu=x^2+5, du=2xdx

(x2+5)32xdx=u3du=u44+C\int(x^2+5)^32xdx=\int u^3du=\dfrac{u^4}{4}+C=(x2+5)44+C=\dfrac{(x^2+5)^4}{4}+C



2.


12x24x3+7dx\int12x^2\sqrt{4x^3+7}dx

u=4x3+7,du=12x2dxu=4x^3+7, du=12x^2dx



12x24x3+7dx=udu=23u3/2+C\int12x^2\sqrt{4x^3+7}dx=\int\sqrt{u}du=\dfrac{2}{3}u^{3/2}+C=23(4x3+7)3/2+C=\dfrac{2}{3}(4x^3+7)^{3/2}+C



3.


(2x3+7)x2dx\int(\sqrt{2x^3+7})x^2dx

u=2x3+7,du=6x2dxu=2x^3+7, du=6x^2dx



(2x3+7)x2dx=16udu=19u3/2+C\int(\sqrt{2x^3+7})x^2dx=\dfrac{1}{6}\int\sqrt{u}du=\dfrac{1}{9}u^{3/2}+C=19(2x3+7)3/2+C=\dfrac{1}{9}(2x^3+7)^{3/2}+C



4.


5x1+4x2dx\int5x\sqrt{1+4x^2}dx

u=1+4x2,du=8xdxu=1+4x^2, du=8xdx



5x1+4x2dx=58udu=512u3/2+C\int5x\sqrt{1+4x^2}dx=\dfrac{5}{8}\int\sqrt{u}du=\dfrac{5}{12}u^{3/2}+C=512(1+4x2)3/2+C=\dfrac{5}{12}(1+4x^2)^{3/2}+C



5.


(3x24x+2)2(3x2)xdx\int(3x^2-4x+2)^2(3x-2)xdx

u=3x24x+2,du=(6x4)dxu=3x^2-4x+2, du=(6x-4)dx

(3x24x+2)2(3x2)xdx=12u2du\int(3x^2-4x+2)^2(3x-2)xdx=\dfrac{1}{2}\int u^2du=u36+C=(3x24x+2)36+C=\dfrac{u^3}{6}+C=\dfrac{(3x^2-4x+2)^3}{6}+C





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment