1.
∫ ( x 2 + 5 ) 3 2 x d x \int(x^2+5)^32xdx ∫ ( x 2 + 5 ) 3 2 x d x u = x 2 + 5 , d u = 2 x d x u=x^2+5, du=2xdx u = x 2 + 5 , d u = 2 x d x
∫ ( x 2 + 5 ) 3 2 x d x = ∫ u 3 d u = u 4 4 + C \int(x^2+5)^32xdx=\int u^3du=\dfrac{u^4}{4}+C ∫ ( x 2 + 5 ) 3 2 x d x = ∫ u 3 d u = 4 u 4 + C = ( x 2 + 5 ) 4 4 + C =\dfrac{(x^2+5)^4}{4}+C = 4 ( x 2 + 5 ) 4 + C
2.
∫ 12 x 2 4 x 3 + 7 d x \int12x^2\sqrt{4x^3+7}dx ∫ 12 x 2 4 x 3 + 7 d x u = 4 x 3 + 7 , d u = 12 x 2 d x u=4x^3+7, du=12x^2dx u = 4 x 3 + 7 , d u = 12 x 2 d x
∫ 12 x 2 4 x 3 + 7 d x = ∫ u d u = 2 3 u 3 / 2 + C \int12x^2\sqrt{4x^3+7}dx=\int\sqrt{u}du=\dfrac{2}{3}u^{3/2}+C ∫ 12 x 2 4 x 3 + 7 d x = ∫ u d u = 3 2 u 3/2 + C = 2 3 ( 4 x 3 + 7 ) 3 / 2 + C =\dfrac{2}{3}(4x^3+7)^{3/2}+C = 3 2 ( 4 x 3 + 7 ) 3/2 + C
3.
∫ ( 2 x 3 + 7 ) x 2 d x \int(\sqrt{2x^3+7})x^2dx ∫ ( 2 x 3 + 7 ) x 2 d x
u = 2 x 3 + 7 , d u = 6 x 2 d x u=2x^3+7, du=6x^2dx u = 2 x 3 + 7 , d u = 6 x 2 d x
∫ ( 2 x 3 + 7 ) x 2 d x = 1 6 ∫ u d u = 1 9 u 3 / 2 + C \int(\sqrt{2x^3+7})x^2dx=\dfrac{1}{6}\int\sqrt{u}du=\dfrac{1}{9}u^{3/2}+C ∫ ( 2 x 3 + 7 ) x 2 d x = 6 1 ∫ u d u = 9 1 u 3/2 + C = 1 9 ( 2 x 3 + 7 ) 3 / 2 + C =\dfrac{1}{9}(2x^3+7)^{3/2}+C = 9 1 ( 2 x 3 + 7 ) 3/2 + C
4.
∫ 5 x 1 + 4 x 2 d x \int5x\sqrt{1+4x^2}dx ∫ 5 x 1 + 4 x 2 d x u = 1 + 4 x 2 , d u = 8 x d x u=1+4x^2, du=8xdx u = 1 + 4 x 2 , d u = 8 x d x
∫ 5 x 1 + 4 x 2 d x = 5 8 ∫ u d u = 5 12 u 3 / 2 + C \int5x\sqrt{1+4x^2}dx=\dfrac{5}{8}\int\sqrt{u}du=\dfrac{5}{12}u^{3/2}+C ∫ 5 x 1 + 4 x 2 d x = 8 5 ∫ u d u = 12 5 u 3/2 + C = 5 12 ( 1 + 4 x 2 ) 3 / 2 + C =\dfrac{5}{12}(1+4x^2)^{3/2}+C = 12 5 ( 1 + 4 x 2 ) 3/2 + C
5.
∫ ( 3 x 2 − 4 x + 2 ) 2 ( 3 x − 2 ) x d x \int(3x^2-4x+2)^2(3x-2)xdx ∫ ( 3 x 2 − 4 x + 2 ) 2 ( 3 x − 2 ) x d x u = 3 x 2 − 4 x + 2 , d u = ( 6 x − 4 ) d x u=3x^2-4x+2, du=(6x-4)dx u = 3 x 2 − 4 x + 2 , d u = ( 6 x − 4 ) d x
∫ ( 3 x 2 − 4 x + 2 ) 2 ( 3 x − 2 ) x d x = 1 2 ∫ u 2 d u \int(3x^2-4x+2)^2(3x-2)xdx=\dfrac{1}{2}\int u^2du ∫ ( 3 x 2 − 4 x + 2 ) 2 ( 3 x − 2 ) x d x = 2 1 ∫ u 2 d u = u 3 6 + C = ( 3 x 2 − 4 x + 2 ) 3 6 + C =\dfrac{u^3}{6}+C=\dfrac{(3x^2-4x+2)^3}{6}+C = 6 u 3 + C = 6 ( 3 x 2 − 4 x + 2 ) 3 + C
Comments