1.
∫(x2+5)32xdxu=x2+5,du=2xdx
∫(x2+5)32xdx=∫u3du=4u4+C=4(x2+5)4+C
2.
∫12x24x3+7dxu=4x3+7,du=12x2dx
∫12x24x3+7dx=∫udu=32u3/2+C=32(4x3+7)3/2+C
3.
∫(2x3+7)x2dx
u=2x3+7,du=6x2dx
∫(2x3+7)x2dx=61∫udu=91u3/2+C=91(2x3+7)3/2+C
4.
∫5x1+4x2dxu=1+4x2,du=8xdx
∫5x1+4x2dx=85∫udu=125u3/2+C=125(1+4x2)3/2+C
5.
∫(3x2−4x+2)2(3x−2)xdxu=3x2−4x+2,du=(6x−4)dx
∫(3x2−4x+2)2(3x−2)xdx=21∫u2du=6u3+C=6(3x2−4x+2)3+C
Comments
Leave a comment